Bibron, M. & Bory de Saint-Vincent, J.B. (1833) - Description of Podarcis peloponnesiacus and Algyroides moreoticus. - In: Vertébrés a sang froid. Reptiles et poissons. Reptiles. Geoffroy & Geoffroy, Expédition Scientifique de Morée, Tome III. 1re partie, Zoologie: pp. 57-76. Mayer, W. & Lutz, D. (1990) - Chemosystematische Untersuchungen zur Phylogenese der Gattung Algyroides und ihrer systematischen Position gegenüber der Sammelgattung Lacerta (Reptilia: Sauria: Lacertidae). - Zoologischer Anzeiger, Leipzig, 224: 99-105. Harris, D.J. & Arnold, E.N. & Thomas, R.H. (1999) - A phylogeny of the European lizard genus Algyroides Bibron and Bory 1833 based on DNA sequence, with comments on the evolution of the group. - Journal of Zoology, London, 249 (1): 49-60. × The four species of Algyroides Bibron & Bory, 1833 form part of the relatively plesiomorphic Palaearctic clade of lacertids comprising Lacerta and its allies. An estimate of phylogeny based on DNA sequence from parts of the 12S and 16S rRNA mitochondrial genes confirms the monophyly of the genus already suggested by several morphological features. The molecular data also indicates that relationships within the clade are: (A. nigropunctatus (A. moreoticus (A. fitzingeri, A. marchi))); this agrees with an estimate of phylogeny based on morphology that assumes the taxon ancestral to Alygroides was relatively robust in body form, and not strongly adapted to using crevices. Initial morphological evolution within Algyroides appears to involve adaptation to crypsis in woodland habitats. The most plesiomorphic form (A. nigropunctatus) is likely to have originally climbed extensively on tree boles and branches and there may have been two subsequent independent shifts to increased use of litter and vegetation matrices with related anatomical changes (A. moreoticus, A. fitzingeri), and one to increased use of crevices (A. marchi). Some members of Algyroides are strikingly similar in superficial morphology to particular species of the equatorial African genus Adolfus. This resemblance results from a combination of many shared primitive features plus a few independently acquired derived ones that are likely to give performance advantage in the relatively similar structural niches that these forms occupy. This study provides evidence that: (1) the use of a combination of molecular and morphological data may sometimes allow the estimation of ancestral anatomical features when these are otherwise unknown; (2) process considerations may permit a choice to be made in cases of character evolution where tree topology means that equally parsimonious alternatives exist; such decisions about character evolution may allow ecological shifts to be similarly assessed; (3) parallel evolution in ecological analogues may involve relatively few characters. Arnold, E.N. & Arribas, O. & Carranza, S. (2007) - Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. - Zootaxa, 1430: 1-86. × DNA sequence indicates the Lacertidae contain two subfamilies, Gallotiinae and Lacertinae, the latter comprising two
monophyletic tribes, the Eremiadini of Africa and arid southwest and central Asia, and the Lacertini of Europe, northwest
Africa and southwest and east Asia. Relationships within the 108 species of Lacertini are explored using mtDNA
(291 bp cytochrome b; 329 bp 12S rRNA for 59 nominal species, and reanalysis of the data of Harris et al. 1998, and Fu
2000). The morphology of the tribe is reviewed and 64 of its characters (equivalent to 83 binary ones) also used to assess
relationships. The Lacertini are assigned to 19 monophyletic units of 1 to 27 species, recognised here as the following
genera (contents are indicated in brackets): Algyroides, Anatololacerta gen. nov. (L. danfordi group), Apathya (L. cappadocica
group), Archaeolacerta (L. bedriagae), Dalmatolacerta gen. nov. (L. oxycephala), Darevskia (L. saxicola group),
Dinarolacerta gen. nov. (L. mosorensis), Hellenolacerta gen. nov. (L. graeca), Iberolacerta (L. monticola group), Iranolacerta
gen. nov. (L. brandtii and L. zagrosica), Lacerta s. str. (sand and green lizards, L. agilis group), Parvilacerta gen.
nov. (L. parva and L. fraasii), Phoenicolacerta gen. nov. (L. laevis group), Podarcis (wall lizards), Scelarcis (L. perspicillata),
Takydromus (Asian grass lizards), Teira (L. dugesii), Timon (ocellated lizards, L. lepida group) and Zootoca (L.
vivipara). Both mtDNA and morphology indicate that Lacerta and Timon are sister taxa, and DNA suggests further possible
relationships among genera (Fig. 1, p. 6). Neither DNA nor morphology indicates that the archaeolacertas (sometimes
formalised as Archaeolacerta sens. lat.) form a clade. Instead, they are representatives of an ecomorph associated
with living on rock exposures and using the narrow crevices that these contain.
The Lacertidae probably arose in the European area, with the Gallotiinae later reaching Northwest Africa and the
Canary Islands, and the ancestor of the Eremiadini invading Africa in the mid-Miocene. The Lacertini spread through
much of their present European range and diversified, perhaps largely by repeated vicariance, around 12–16 My ago,
producing the ancestors of the present mainly small-bodied genera, which then underwent often modest speciation. Three
units spread more widely: the Lacerta-Timon clade of large-bodied lizards probably dispersed earliest, followed by Algyroides
and then Podarcis. Overall, European Lacertidae show a pattern of repeated spread, often accompanied by restriction
of previous groups. Expansion of Lacertini may have displaced earlier lacertid lineages from all or much of Europe;
while spread of Podarcis may have restricted many other genera of Lacertini. The earlier expansion of the Lacerta-Timon
clade probably did not have this effect, as difference in adult body size restricted competitive interaction with other
forms. Several invasions of more distant areas also occurred: of East Asia by Takydromus over 10 My ago, and more
recently of northwest Africa by Podarcis, Scelarcis and Timon, and Madeira by Teira.
Relationships within the Eremiadini estimated from both mtDNA, and nDNA differ considerably from those based
on morphology. They indicate relatively mesic forms may have diversified widely across Africa and given rise to at least
three independent invasions of arid habitats. MtDNA also indicates that Lacerta andreanskyi belongs in the Eremiadini
and may occupy a basal position there. It is assigned to a further new genus, Atlantolacerta gen. nov.
|