

1 Color polymorphism and conspicuousness do 2 not increase speciation rates in Lacertids

4 Thomas de Solan ¹, Barry Sinervo ^{2,†}, Philippe Geniez ³, Patrice David ^{1,4}, Pierre-André
5 Crochet^{1,4,*}

6 **Affiliations**

8 ¹ CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France

9 ² Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA,
10 United States of America

11 ³ CEFE, Univ Montpellier, CNRS, EPHE-PSL, IRD, Montpellier, France

12 [†] deceased author

13 ⁴ equal contributions

14

15 *Corresponding author

16 Correspondence: pierre-andre.crochet@cefe.cnrs.fr

17

18 **Abstract**

19 Conspicuous body colors and color polymorphism have been hypothesized to increase rates of
20 speciation. Conspicuous colors are evolutionary labile, and often involved in intraspecific sexual
21 signaling and thus may provide a raw material from which reproductive isolation can easily evolve,
22 while polymorphism could favor rapid evolution of new lineages through morphic speciation. Here,
23 we investigated the influence of the presence/absence of conspicuous colorations, and of color
24 polymorphism on the speciation of Lacertids. We used several state-dependent diversification
25 models, and showed that, regardless of the methods, conspicuous colorations and color
26 polymorphism were not related to species speciation. While the lack of correlation between
27 conspicuous colorations and speciation rates is in line with most of the literature testing this
28 hypothesis, the results for color polymorphism contradict previous studies, and question the
29 generality of the morphic speciation hypothesis.

30

31 **Key words:** coloration, sexual selection, polymorphism, speciation, reptile

32

33

34 **INTRODUCTION**

35 Species diversification is not a constant process across time and taxonomic groups (Rabosky et al.
36 2007; Diaz et al. 2019). Within cephalopods for example, the Octopus order contains hundreds of
37 species, while the much older order Nautilida only contains three species (Lindgren et al. 2004).
38 Numerous studies have tried to explain these variations in diversification rates by investigating the
39 links between ecology, life history traits or phenotype and extinction or speciation rates (Cardillo et
40 al. 2003; Arbuckle and Speed 2015; Cooney and Thomas 2020). Among the traits investigated, those
41 under sexual selection (sexual traits) have attracted a lot of attention because divergence in sexual
42 traits can generate reproductive isolation between parapatric (Boul et al. 2007) or allopatric lineages
43 (Price 1998; Panhuis et al. 2001) and strengthen reproductive barriers during secondary contact
44 (Svedin et al. 2008), hence increasing speciation rates. However, sexual selection may also impose a
45 burden on population viability and hence to increase extinction rates (Houle and Kondrashov 2002;
46 Doherty et al. 2003; Kokko and Brooks 2003). The outcome of these opposing processes is difficult to
47 predict and, until now, studies linking sexual selection and diversification rates have produced mixed
48 results (Barracough et al. 1995; Seehausen 2000; Kraaijeveld et al. 2011; Huang and Rabosky 2014;
49 Cooney et al. 2017).

50 Another trait long suspected to increase the rates of speciation is polymorphism, here
51 defined as the co-occurrence of as several discrete, heritable morphs co-occurring within
52 populations. Polymorphic species have been suggested to have higher speciation rates, based on two
53 lines of reasoning resting mainly on indirect or theoretical arguments.

54 The first line of reasoning is that polymorphism may increase the rate of speciation if morphs
55 are associated to different ecological niches (i.e. ecomorphs). The presence of alternative ecomorphs
56 within the same population widens the ecological niche of the species. This may in turn facilitate
57 range expansion through an increase of colonization abilities and the persistence of populations in
58 variable environments (Forsman et al. 2008; Takahashi and Noriyuki 2019), two factors that are
59 known to increase speciation rates (Kennedy et al. 2017). Specialized ecomorphs have been observed
60 in several species, but it is not yet clear whether they occur in lacertids. (Kusche et al. 2015; Lattanzio
61 and Miles 2016; Whitney et al. 2018, Scali et al. 2016).

62 The second line of reasoning rests on the “morphic speciation” scenario (West-Eberhard
63 1986). According to this scenario, a polymorphic population can loses a morph during the
64 colonization of a new environment or area, resulting in a rapid phenotypic divergence of the
65 remaining morph(s) and ultimately in a reproductive isolation from the ancestral population (Corl et
66 al. 2010a). The rapid phenotypic divergence after the loss of one morph may occur through (i) the
67 cessation of gene flow from the missing morph, which used to continuously reintroduce maladapted
68 alleles into the other morphs’ genetic backgrounds, preventing them from reaching their phenotypic

69 optima (character release, West-Eberhard 1986); (ii) a change in the fitness landscape, as optimal
70 trait combinations for one morph may change when another morph disappears from the population.
71 For example, loss of a morph can drastically change the predation pressure acting on the remaining
72 morphs (Bond 2007) if predation generates frequency dependent selection (Olendorf et al. 2006).
73 Similarly, competition among morphs can generate frequency-dependent selection in polymorphic
74 species (Sinervo and Lively 1996).

75 While several authors have promoted the morphic speciation hypothesis, an intuitive
76 argument suggests that polymorphism could have opposite effects on speciation depending on mate
77 choice within polymorphic populations: assortative mating by morph can enhance speciation (and
78 promote shifts from ancestral polymorphism to derived monomorphism through speciation, Jamie
79 and Meier 2020). However, disassortative mating by morph is likely to slow speciation (and maintain
80 polymorphism through the speciation process, Jamie and Meier 2020; Chouteau et al. 2017), while
81 random mating relative to morph should promote less stringent mate choice in polymorphic species
82 than in monomorphic species, as preferences span a larger spectrum of phenotypic space than in
83 monomorphic species. In such cases (random or disassortative mating), the changes in color traits
84 should be less likely to result in reproductive isolation compared to non-polymorphic species.

85 In spite of the theoretical interest generated by the “morphic speciation” hypothesis, this
86 hypothesis has been examined empirically by only four studies until now. First, two studies
87 investigated the effect of polymorphism on population divergence at small evolutionary scales
88 (within a species complex in lizards, Corl et al. 2010b, 2012). They found that polymorphic
89 populations were often ancestral, and that populations that lost a morph after colonizing a new
90 environment showed reproductive incompatibilities with the ancestral population and rapid
91 phenotypic changes. At macroevolutionary scale, two studies found that polymorphism increased
92 speciation rates in birds and in lacertid lizards (Hugall and Stuart-Fox 2012; Brock et al. 2021). Taken
93 together, these findings support the hypothesis of increased speciation rates in polymorphic species.

94 The lacertid lizards (family Lacertidae) is a group of Squamata containing more than 300
95 species distributed across Europe, Africa and Asia. This family is split in two main clades, the
96 Gallotiinae, which contains only a few and often insular species, and the Lacertinae, which contains
97 most of the lacertids species. The Lacertinae are divided between (i) the tribe Eremiadini, that lives
98 mainly in xeric habitats in North African and the Middle East and often display dull colorations, and
99 (ii) the Lacertini, that live mostly in temperate habitats in Europe and are more often colorful. Among
100 those three clades, many species present conspicuous colorations. Bright colorations are found in
101 both sexes on the throat and the belly, and are known to influence female mate choice and male-
102 males contests (Abalos et al. 2016; Badiane et al. 2020). In some species, males also display blue or
103 green ocelli on their flanks, or conspicuous outer ventral scales, that serve as indicators of the male

104 quality during males intrasexual competition (Pérez i De Lanuza et al. 2014; Names et al. 2019).
105 Furthermore, several lacertids present a polymorphism of color. Such polymorphism can be found in
106 both sexes when it occurs on ventral coloration, but is restricted to males when it occurs on the
107 flank. In the genus *Podarcis*, the Common Wall Lizard *P. muralis* has become a model species for the
108 study of color polymorphism as several morphs differing in ventral coloration coexist in both sexes in
109 most populations (Galeotti et al. 2013). These morphs may be related to different breeding strategies
110 and life history traits (Calsbeek et al. 2010; Galeotti et al. 2013; but see Abalos et al. 2020) and they
111 have a simple genetic determinism in *P. muralis* and in six other congeneric species, being controlled
112 by two small regulatory genomic regions (SPR and BCO2, Andrade et al. 2019). Overall, the presence
113 of specialized morphs and the variability of sexual colorations make the family Lacertidae an ideal
114 model to investigate the impact of sexual selection on speciation rates and the hypothesis of morphic
115 speciation.

116 Here, we use the coloration data of all the species of this family, to address two questions: (i)
117 what are the evolutionary histories of conspicuous colorations and color polymorphism in this
118 family? (ii) Is there an effect of conspicuousness and color polymorphism on species speciation? We
119 hypothesized that brightly colored species undergo higher intensity of sexual selection than dull
120 ones. However, because several previous studies failed to find a link between sexual selection
121 proxies and speciation rates (Huang and Rabosky 2014; Cooney et al. 2017), we did not expect an
122 effect of conspicuous colorations on speciation. For color polymorphism, based on the morphic
123 speciation hypothesis, we predicted that color polymorphism increases speciation rates in lacertids.
124 During the course of our study, we became aware of the publication of Brock et al. (2021) who had
125 independently addressed the same question using the same group of species but using different data
126 and methods (see discussion). Because our study leads to opposite conclusions, we think it is
127 important to publish our results, and we have devoted a section of our study to address the reasons
128 that might explain this discrepancy.

129

130

131 MATERIAL AND METHODS

132 Data acquisition

133 We follow the taxonomy and species list of lacertids from the Reptile Database (Uetz et al. 2020). We
134 removed from this list several categories of species that are expected to have speciation modes
135 differing from the rest of the species and driven by mechanisms presumably not be affected by the
136 presence of polymorphism. We first removed the parthenogenetic species, as they arise by
137 interspecific hybridization and result in unisexual clones providing “instant” reproductive isolation
138 from their parent species (several species of the genus *Darevskia*, noted as “parthenogenetic” in

139 Table S1). We also removed strictly insular species (species noted as “insular” in Table S1). Although
140 morphic speciation might have helped the divergence of some insular species, we believe that
141 geographic isolation remains the primary factors in of the speciation process. Supporting this idea, no
142 case of in situ (intra-island) speciation is known in insular lacertids. We also removed four species for
143 which we could not find any accurate information on the coloration and five species with an
144 uncertain taxonomic status (as judged by two of us, PAC and PG). Insularity was assessed using the
145 distribution information available in the reptile-database website. After these steps, we retained 295
146 species for the speciation analysis. The final list of all species, including all species removed from the
147 dataset, can be found in Supplementary Table S1.

148 We scored the presence of sexual colorations and polymorphism from multiple sources, such
149 as scientific and naturalist papers and field guides, but also multiple photographs taken by the
150 authors in the field (sources listed in Table S1). A species was considered as having conspicuous
151 colorations if, at least in males, (1) the ventral side, or a part of its ventral side (throat, belly), was not
152 white, or (2) the flanks displayed several ocelli or spots that contrast from the rest of dorsal/flank
153 areas and are of a different color, or (3) the species displayed a specific color during the mating
154 season. Furthermore, we considered a species as polymorphic if, within a population, individuals of a
155 same sex and age-class exhibit several distinct sexual colors. We did not score coloration as
156 polymorphic if the morphs were not clearly distinguished, nor if the distinct morphs were associated
157 with age or sex. Species where coloration varies geographically but not within populations were not
158 treated as polymorphic, even though it was sometimes difficult to determine if some variation in
159 coloration reported in the literature was geographically structured or not. Finally, a few species
160 displayed dorsal polymorphism with non-conspicuous colors (Ortega et al. 2014; Ortega et al. 2015;
161 Gallozzi et al 2022). However, such polymorphism always occurs in species which also show
162 conspicuous ventral polymorphism, so this factor should not influence our analysis. Data on sexual
163 colorations and polymorphism are provided in Supplementary Table S1. It should be noted that there
164 is no polymorphic species without conspicuous coloration in Lacertids.

165 We used the phylogeny provided by Garcia-Porta et al. (2019) as backbone phylogeny. We
166 subsequently added the 85 non-insular and non-parthenogenetic species that were not sampled by
167 Garcia-Porta. These species were added to the backbone tree using the function
168 `add.species.to.genus` from the `phytools` package (Revell 2012). This function randomly inserts new
169 species within a predefined genus. If the phylogenetic position was known from previous work, the
170 species was added with its sister taxa at a random divergence date. If no phylogenetic information
171 was available, it was randomly located in its genus. We repeated this operation one hundred times in
172 order to account for phylogenetic uncertainty in all analyses.

173

174 **Trait evolution and ancestral state reconstruction**

175 We investigated the evolutionary inertia for conspicuous colorations and polymorphism using the δ
176 values (Borges et al. 2019). This index is designed to measure phylogenetic signal in categorical traits,
177 with high δ value indicating high phylogenetic signal (i.e. strong phylogenetic constraint to trait
178 evolution). To test the significance of the observed δ , we compared with a Wilcoxon test the
179 distribution of the 100 observed δ , measured on the 100 phylogenetic trees, against a null
180 distribution obtained by measuring δ after randomization of the trait data among species
181 (phylogenetic signal = zero). In addition, we reconstructed the ancestral state of the coloration with
182 the `make.simmap` function from the `phytools` package (Revell 2012). This function simulates
183 stochastic character histories using the state of the character on the tips and a continuous-time
184 reversible Markov model. For this analysis, coloration was coded with three states: (1) no
185 conspicuous coloration, (2) presence of conspicuous colorations without polymorphism, (3) presence
186 of conspicuous colorations and polymorphism. Transition rates between states were allowed to
187 differ and we did not exclude transitions from (1) to (3) although no such transitions were recovered
188 by the model (see below). We repeated the ancestral state reconstruction (ASR) on the 100
189 phylogenetic trees, with 100 simulations for each analysis.

190

191 **Character associated diversification analysis**

192 We used several methods to compare the rates of speciation between species with and without
193 conspicuous colors, and between species with and without polymorphism. We excluded the species
194 lacking conspicuous colorations of the polymorphism analysis because there are no direct
195 evolutionary transitions from non-conspicuous to polymorphic, see results of the ASR). We however
196 tested the influence of this exclusion by repeating the polymorphism analysis with all the species.

197 First, we used the speciation/extinction analysis of BAMM (Rabosky 2014) to detect shifts in
198 speciation rates along the trees. This analysis allows the speciation rates to vary in time and among
199 branches and does not consider character states. We then applied the STructured RAte Permutations
200 on Phylogenies analysis (STRAPP, Rabosky and Huang 2016) to test if the speciation rates measured
201 with BAMM were different between species with and without conspicuous colorations and color
202 polymorphism. STRAPP compares the Mann–Whitney U-test statistic measuring the relationship
203 between the binary character state and speciation rates against a null distribution.

204 Secondly, we inferred the speciation rates with the Diversification Rates statistic (DR statistic,
205 Jetz et al. 2012). Despite its name, the DR statistic provides a better estimate of the rate of speciation
206 than of net diversification (Title and Rabosky 2019). For a given species, the DR statistic is computed
207 as a weighted average of the inverse branch lengths connecting the focal species to the root of the
208 phylogeny. We then used a non-parametric test, FiSSE (Fast, intuitive State-dependent Speciation

209 Extinction analysis, Rabosky and Goldberg 2017), to investigate the effect of conspicuous colorations
210 and polymorphism on speciation rates. For a given tree, this test first measures the difference of
211 mean DR statistic between species with different character states, and then compares this difference
212 to a null distribution. When testing for polymorphism effect, we first measured the DR statistic on
213 the whole tree, then removed the species lacking conspicuous colorations and performed the test.

214 Finally, we fitted State Dependent Diversification models (SDD) to test the influence of
215 conspicuous colorations and color polymorphism on the diversification rates of Lacertid. For each
216 trait, we implemented four models: two models measuring character dependent diversification, plus
217 the corresponding two null models estimating Character Independent Diversification (CID). The first
218 character dependent model we fitted was a Binary-State Speciation and Extinction model (BiSSE,
219 Maddison et al. 2007). This model estimates one rate of speciation and extinction for each character
220 state. The second character dependent model was the Hidden State Speciation and Extinction model
221 (HiSSE; Beaulieu and O'Meara 2016). This model includes hidden states, which allows the
222 diversification rates to vary within each state (e.g. polymorphic species can have two different
223 diversification rates). We also fitted two Character Independent Diversification models: CID-2 and
224 CID-4, which were the null models corresponding respectively to BiSSE and Hisse: (Beaulieu and
225 O'Meara 2016). They respectively have the same number of parameters than BiSSE and HiSSE
226 models, but differ in having their diversification parameters independent of the observed character
227 state (i.e. diversification parameter set equal for the observed state and different for the hidden
228 states). It should be noted that the diversification rates estimated by SDD and CID models are not
229 time dependent, and only vary depending on characters states (unlike speciation/extinction analysis
230 of BAMM; Rabosky 2014). We selected the best-fit model among these four models based on the
231 Akaike Information Criterion corrected for sample size (AICc, models were preferred when delta AICc
232 > 2). All the models were made using the R package hisse (Beaulieu 2017).

233 To account for phylogenetic uncertainty, we fitted the four SDD models, as well as STRAPPS
234 and FiSSE analysis for each trait and phylogenetic tree. For SDD models, we assessed the best-fitting
235 model each time.

236 Although our study and the study of Brock et al. (2021) were made on the same taxonomic
237 groups, the results of our analysis contradict the results presented in Brock et al. (see below). We
238 thus made additional analysis to investigate the origin of these differences (Supplementary
239 Methods). We also repeated the STRAPPS and FiSSE analysis with (i) our coloration data and the
240 species included in Brock et al. (2021), and (ii) the coloration data and species of Brock et al. (2021).

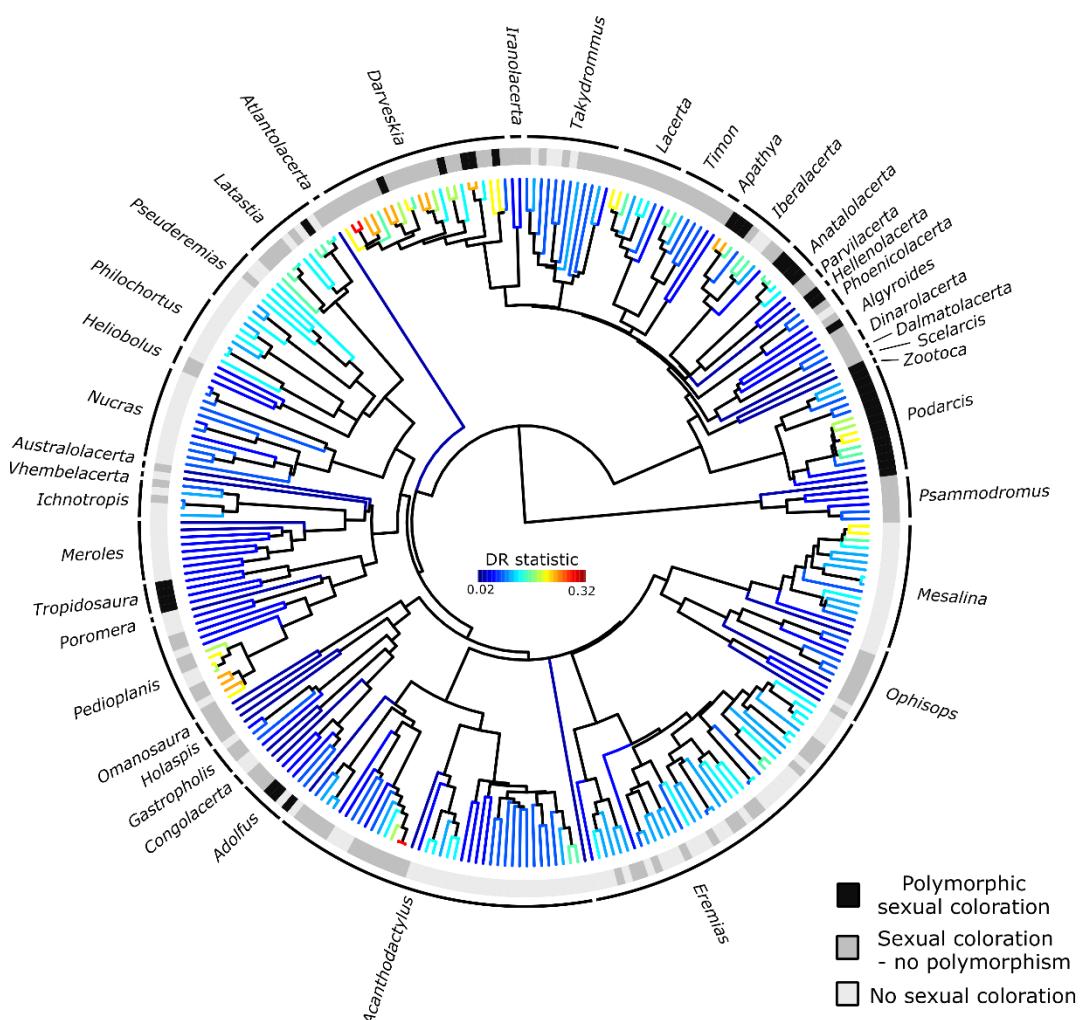
241

242 **RESULTS**

243 Conspicuous colorations were frequent in lacertids, as they were present in 63% of the species
244 analyzed (Figure 1). Color polymorphism, on the other hand, was rarer and only concerns 13% of the
245 species analyzed. Polymorphism was unequally distributed in lacertids: the subfamily Lacertini
246 includes more than half of the polymorphic species while it only contained 100 species out of the 295
247 species of Lacertidae and within the Lacertini, all mainland species of the genus *Podarcis* were
248 polymorphic species (see Table S1). Both traits showed high phylogenetic conservatism (median δ
249 across phylogenies = 6.39, $W=10e5$, $p<0.001$ and median δ = 75.7, $W=10e5$, $p<0.001$ respectively).
250 The ancestral state reconstruction suggested more acquisitions than losses in the evolution of both
251 conspicuous colorations and color polymorphism (Figure S1, 43 acquisitions vs 23 losses for
252 colorations and 15 acquisitions vs 3 losses for polymorphism). Transitions from dull-colored to
253 polymorphis, and the reverse, were very rare (0.04 and 1.1 on average across all trees respectively),
254 indicating that, the polymorphic state evolves from a monomorphic conspicuous-color state in
255 lacertids. Finally, the ancestor of lacertids probably displayed conspicuous colorations without being
256 polymorphic (Figure S1).

257

258 **Character associated diversification analysis**

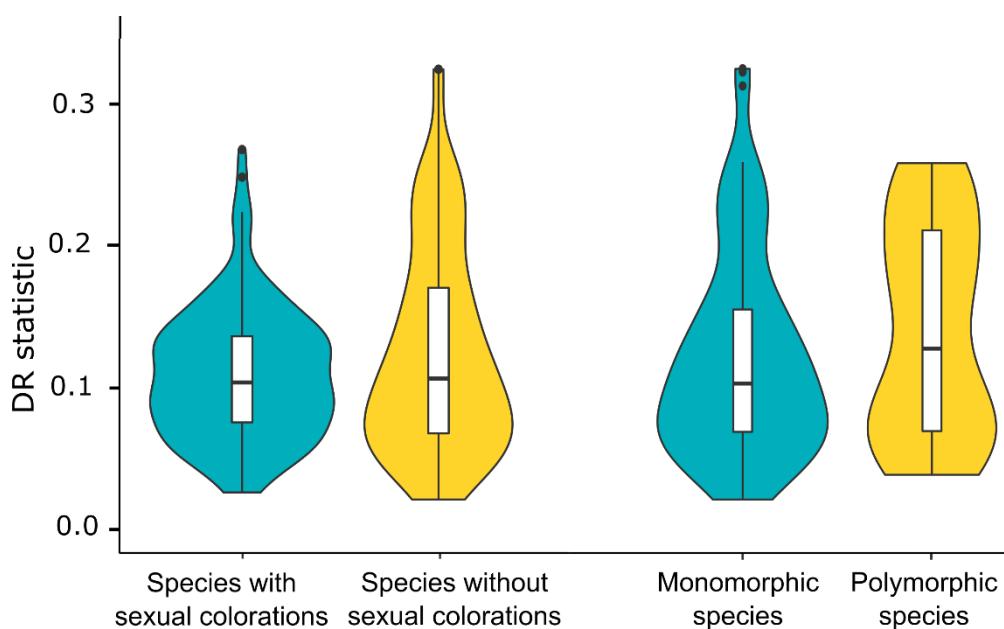

259 We wanted to test whether conspicuous coloration on the one hand, and polymorphism on
260 the other hand, influence speciation rates. As explained above, to test for the effect of
261 polymorphism, we excluded inconspicuous species, as the ancestral state of polymorphic lineages is
262 always conspicuously colored. Including inconspicuous species would confound the effects of
263 polymorphism per se and conspicuousness. When included, however, species lacking conspicuous
264 colorations had a minor impact on the results, and did not change the overall conclusion (see
265 Supplementary Methods).

266 The BAMM analysis detected a shift of speciation rates only in 21 trees out of the hundred
267 trees. In addition, the STRAPP tests indicated that neither the presence of conspicuous colorations
268 nor the presence of color polymorphism affected speciation rates ($p>0.5$ for all tests across the 100
269 trees).

270 The DR statistic showed that inconspicuously and conspicuously colored species had similar
271 speciation rates (average λ_0 across trees = 0.11 ± 0.04 and average λ_1 across trees = 0.13 ± 0.07
272 respectively, non-significant: $p>0.5$ for all FiSSE tests, Figure 1 and 2). Similarly, there was no
273 difference in DR statistic between species conspicuously colored monomorphic and polymorphic
274 species (average λ_0 across trees = 0.12 ± 0.07 and average λ_1 across trees = 0.14 ± 0.07 respectively,
275 non-significant: $p>0.5$ for all FiSSE tests, Figure 1 and 2).

276

277

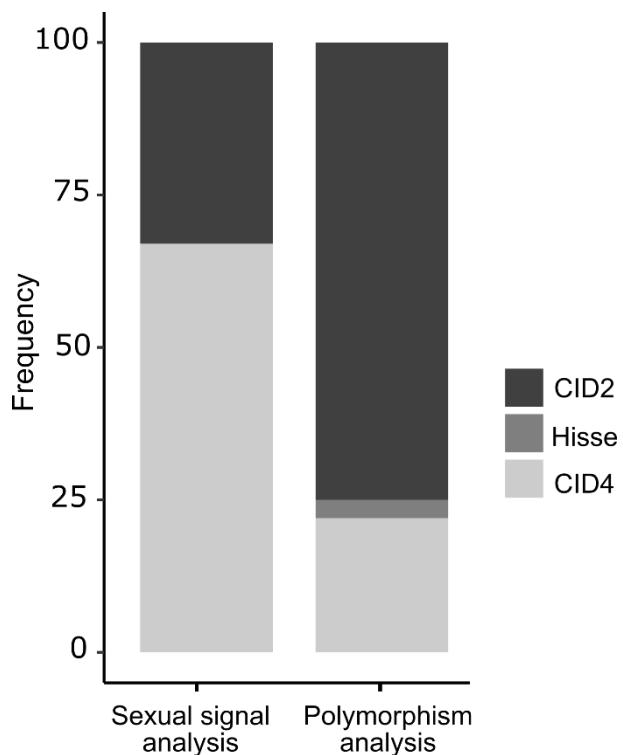

278

279 **Figure 1.** Phylogenetic relationships of the 295 Lacertidae species included in the analysis. This tree was
280 randomly chosen among the hundred trees produced for the analysis to account for phylogenetic
281 uncertainty (see methods). States of sexual coloration and polymorphism characters are indicated at
282 the tips. Tip branches are colored according to the mean DR statistic measured across all trees (an
283 estimate of the branch-specific speciation rate).

284

285 Last, the best fitting State Dependent Diversification (SDD) models for the evolution of
286 conspicuous coloration were models where diversification parameters are independent of the
287 observed character state (CID 2 or CID 4) for all the trees (Figure 3). Similarly, we found a low support
288 for an influence of color polymorphism on the diversification of species with conspicuous colorations.
289 CID 2 and CID 4 were the best fitting models for 75 and 22 trees respectively, while HiSSE was the
290 best fitting model for 3 trees only (Figure 3).

291



292

293 **Figure 2.** Violin plots of the DR statistic values for the species with and without sexual coloration, and
294 with and without color polymorphism.

295

296

297

298 **Figure 3.** Frequency of the best fitting diversification models for the sexual coloration and color
299 polymorphism analysis repeated across one hundred trees. Models with character dependent
300 diversification (HISSE) were considered as best fitting when $\Delta AICc > 2$. BiSSE models were included
301 in both analyses, but never had the lowest AICc.

302

303 The comparison with Brock et al.'s (2021) analysis indicated that the differences of results
304 between our SDD models and theirs stem from differences in character states, i.e. in the species
305 considered to be polymorphic *versus* not (for more details see Supplementary Results and Table S2),
306 as well as from the use of an old version of the package encoding SDD models in Brock et al (2021).
307 However, this difference of results only applied to SDD models. Unlike SDD models, the non-
308 parametric FiSSE and STAPPS analysis never detected an effect of polymorphism on speciation in the
309 set of species studied by Brock et al., whether we used our estimates of character states (STRAPPS
310 test: $p=0.98$; FiSSE test: $\lambda_0 = 0.10$, $\lambda_1=0.13$, $p=0.88$), or theirs (STRAPPS test: $p=0.98$; FiSSE test: $\lambda_0 =$
311 0.10 , $\lambda_1 = 0.14$, $p=0.98$).

312

313

314 **DISCUSSION**

315 Our analyses suggested that neither the presence of conspicuous colorations nor color polymorphism
316 increases the rates of speciation in Lacertids. We also showed that conspicuous colorations and color
317 polymorphism are labile across taxonomy, and were gained and lost several times during the
318 diversification of Lacertids. The lack of effect of conspicuous colorations on speciation is in
319 agreement with several previous studies (Huang and Rabosky 2014; Gomes et al. 2016; Cooney et al.
320 2017). However, our results for color polymorphism is in contradiction with the two studies that
321 tested the morphic speciation hypothesis at multispecies level (Hugall and Stuart-Fox 2012; Brock et
322 al. 2021).

323 The absence of effect of conspicuous colorations on speciation rates at the scale of a family
324 contrasts with the accumulation of evidence showing an influence of sexual selection on pre-zygotic
325 (Boughman 2001; Masta and Maddison 2002; Boul et al. 2007) and post-zygotic isolation (Vamosi
326 and Schluter 1999; Naisbit et al. 2001) at short time scales. Yet, there is not necessarily a link
327 between processes acting at short time scales and diversification rates observed at large
328 phylogenetic scales. This decoupling could arise because different processes influence the creation of
329 new species and their persistence over time. For instance, some authors found that sexual selection
330 increases the risk of extinction in birds (McLain et al. 1995; Doherty et al. 2003; but see Cooney et al.
331 2017 for opposite results). However, SDD models were found to be unable to accurately measure
332 both speciation and extinction rates (Beaulieu and O'Meara 2016; Louca and Pennell 2020), and this
333 hypothesis is thus difficult to test using current comparative methods. The lack of correlation
334 between speciation rates and the presence of sexual colorations could also come from the fact that
335 speciation does not increase with the intensity of sexual selection but rather with the evolutionary
336 rates of sexual traits (Cardoso and Mota 2008). These two features are not necessarily correlated, as
337 a trait may be at the same time very conserved across species and under strong sexual selection

338 (Song and Bucheli 2010; Mejías et al. 2020). The few studies investigating this question found
339 support for a positive correlation between speciation rates and evolutionary rates of sexual traits
340 (Cardoso and Mota 2008; Gomes et al. 2016) but they were made on birds, and researches on other
341 taxonomic groups are needed. Finally, the occurrence of conspicuous coloration might be a poor
342 proxy of the intensity of sexual selection. In lacertids, mating choice and interspecific recognition are
343 known to rely on pheromones as much as on coloration (Cooper and Pérez-Mellado 2002; Khanno
344 et al 2011; Gabirot et al. 2013). It is thus possible that considering the presence of conspicuous
345 colorations, even when they are sexually dimorphic, is not sufficient to detect an effect of sexual
346 selection on speciation.

347 The lack of effect of color polymorphism on speciation rates contradicts the conclusions of
348 Brock et al. (2021) obtained on the same taxonomic group. The first reason is that our attributions of
349 character states (polymorphic versus nonpolymorphic) differed in some cases from theirs. We
350 therefore re-checked our attributions in case of mismatches. Ten species considered monomorphic
351 by Brock et al were considered polymorphic by us. Some of these reflect the fact that we coded
352 polymorphism as the presence of discrete states on any conspicuous coloration, while Brock et al.
353 (2021) considered only throat coloration -thus excluding four *Tropidosaura* species. For six other
354 species we re-checked bibliographic references (see table S2) and confirmed mentions of
355 polymorphism that had been apparently overlooked by Brock et al. 2021. Seven species were
356 considered monomorphic by us and polymorphic by Brock et al. 2021. In four of these, color morphs
357 do not co-occur within a population, but occur in allopatric populations or subspecies – which does
358 not qualify as polymorphism *sensu stricto*. For the last three, we did not find any mention of
359 polymorphism in the literature (and Brock et al. 2021 did not provide a reference). All in all, we
360 believe that, although the status of each particular species can always been updated and discussed,
361 our character states are more accurate and closer to the original definition of a polymorphic species
362 and to the concept of morphic speciation (i.e. not focused only on throat coloration (West-Eberhard
363 1986) and excluding geographic races).

364 In addition, methodological issues can contribute to discrepancies in the results. The SDD
365 methods have been criticized on the basis of high type-1 errors, i.e. they may detect differences in
366 diversification rates even for neutral traits and are probably overparameterized as speciation and
367 extinction can hardly be estimated independently (Rabosky and Goldberg 2015, 2017; Louca and
368 Pennell 2020). This is illustrated by the fact that 6 of the 8 estimated parameters are at the boundary
369 of the allowed interval in the HISSE model (all four extinction rates and two transition rates are zero,
370 using Brock et al.'s data and character states) ; the same characteristic is present in Brock et al.'s
371 original results (their Table 2) as well as in our run of their script with their data, character states and
372 package version (our Table S3). FiSSE and STRAPP have been developed to avoid this kind of

373 drawbacks and provide a more robust, and nonparametric, way of testing character-dependent
374 speciation rates (Rabosky and Huang 2016; Rabosky and Goldberg 2017). The fact that these
375 methods do not recover an effect of polymorphism, whatever the data and character states used
376 (ours or Brock et al's) suggests that the result of Brock et al (2021) is likely a type-1 error.

377 An additional explanation for the lack of correlation between conspicuous colorations /
378 polymorphism and speciation rates could be the limited role that pre-zygotic isolation has in lacertids
379 diversification. The influence of sexual selection and polymorphism on species speciation occurs
380 mainly at the pre-zygotic stage (West-Eberhard 1986; Coyne and Orr 1989; Gray and Cade 2000;
381 Ritchie 2007). However, the influence of this stage in lacertids speciation is unclear: some species are
382 partially able to recognize each other using pheromones (Barbosa et al. 2006; Gabirot et al. 2012),
383 but interspecific courting seems to be frequent (Martín and López 2006; Galoyan et al. 2019),
384 suggesting that post-zygotic isolation also play a strong role in the speciation process (Carretero
385 2008; Pinho et al. 2009). On the other hand, the groups in which an effect of sexual selection and
386 polymorphism was reported are taxa where the pre-zygotic isolation is determinant for speciation
387 (e.g birds, Barraclough et al. 1995; Brambilla et al. 2008). This may explain why, depending on the
388 groups, sexual trait and polymorphism sometimes correlate with speciation rates and sometimes do
389 not. We also lack data on the effect of morphs on mate choice in Lacertidae, as we only found some
390 information on mate choice relative to morphs in *Podarcis muralis* (Pérez i de Lanuza et al. 2013;
391 Sacchi et al. 2015, 2018, who found mixed support for color assortative mating) while indirect
392 genetic results also suggest some possible assortative mating in *Podarcis melisellensis* (Huyghe et al.
393 2010).

394 We also wish to stress a previously neglected inherent difficulty with the detection of the
395 morphic speciation model through comparative methods in empirical datasets. The diversification
396 analyses used by us or by Brock et al. (2021) test for differences in diversification rates associated
397 with the presence of polymorphism. Yet, the morphic species model predict that “polymorphic
398 lineages should be ancestral and monomorphic lineages should be derived” (Corl et al. 2010b), as
399 morphic speciation generates monomorphic species from polymorphic species. The signature of the
400 morphic speciation model in phylogenies should thus be an excess of monomorphic species sister to
401 a polymorphic species, not an increased diversification rate in clades where all species are
402 polymorphic. This creates an overlooked paradox: detecting an increased net diversification rate in
403 clades where most species are polymorphic would actually run against the predictions of the morphic
404 species model, unless one assumes that some lineages have an inherent tendency to regain the
405 polymorphic state quickly after it is lost – an assumption without clear support in the data.

406 A large variety of factors, besides those examined in this study, may explain the variations of
407 speciation rates observed within groups (for instance diet, Tran 2016; habitat specialization Liedtke

408 et al. 2016 or reproduction mode, Lynch 2009). In lacertids, the two most diverse genera
409 (*Acanthodactylus* and *Eremias*, representing 22% of all the Lacertid species) live in arid areas of the
410 Middle East or North Africa. Similarly, an increase of lizard diversity in arid areas have been reported
411 in biogeographic studies (Powney et al. 2010; Lewin et al. 2016). As such, this pattern suggests that
412 hot and arid conditions play a strong role in the radiation of lacertids. Yet, the factors at the origin of
413 these radiations are still unclear. Adaptive radiation seems unlikely, as most lacertids species living in
414 arid areas seem to show similar ecological niches as inferred from distribution patterns: most arid
415 regions of the Middle East or North Africa are inhabited by a maximum of 3-4 species of
416 *Acanthodactylus* (large bodied) and 3-4 species of *Mesalina* (small bodied) segregated by habitat
417 preferences within genus (e.g. Haas 1951; Blanc 1980; Werner 1982; Schleich et al. 1996; Nouira and
418 Blanc 2003; Rifai et al. 2003; Baha El Din 2007), and most species diversity in the genera correspond
419 with changes in these species between regions. However, such pattern could be the result of the
420 strong relation between the environment and ecological and life history traits of lizards (e.g. increase
421 in activity time and fecundity with temperature; Adolph and Porter 1993) that may have facilitated
422 speciation in arid areas (discussed in Powney et al. 2010). Nevertheless, currently no studies properly
423 tested this possible link, and this hypothesis is yet to be confirmed.

424 One main limitation of our work lies in the data we used to score the coloration. Neither
425 photographs nor literature sources account for variation of ultraviolet (UV) coloration. Lacertids
426 frequently use UV coloration for mate choice or to signal their fighting capacity (Olsson et al. 2011;
427 Pérez i de Lanuza et al. 2014). Thus, in principle, we could have underestimated the frequency of
428 conspicuous coloration and polymorphism in our dataset. However, known UV signals in lizards are
429 always displayed on a patch with a visibly different color than the rest of the body (blue throat or
430 green ocelli for instance), so it is unlikely that this issue affects our detection of conspicuousness,
431 although it may have done so for polymorphism. As far as we know, there is currently no example of
432 polymorphism limited only to UV coloration in animals. A second methodological limitation may stem
433 from the strong geographical bias prevailing in the taxonomic researches. In the last twenty years, an
434 intensive work unraveled the phylogeny of the lacertids of the northern hemisphere, allowing the
435 description of numerous species. On the other hand, almost no taxonomic studies based on genetic
436 data have been made on lacertids of the equatorial region. The diversity of species living in this
437 region is thus probably strongly underestimated. It is difficult to predict in which ways this issue may
438 influence our results, because species with and without conspicuous colorations and color
439 polymorphism are present in the equatorial region.

440 Our analysis revealed that the speciation of lacertids was not influenced by the presence of
441 conspicuous colorations nor by color polymorphism. These results support the idea of a decoupling
442 of the effect of sexual selection on species diversification between short time scale (i.e. effects on

443 pre- and post-zygotic isolation) and large time scale (i.e. effects on rates of extinction/speciation).
444 They also call into question the generality of the morphic speciation hypothesis, which is currently
445 supported by only two large scale study (Hugall and Stuart-Fox 2012; Brock et al. 2021). The fact that
446 prezygotic isolation does not appear to be determinant for the speciation in lacertids may explain
447 this lack of effect of polymorphism and conspicuous coloration that we found. In the future, it would
448 be interesting to test this hypothesis by investigating other taxa in which speciation is mainly driven
449 by post-zygotic isolation.

450 **Acknowledgements**

451 We thanks all photographers who contributed to the amphibians and reptiles photos collection
452 managed by PG.

453 **Data, scripts, code, and supplementary information availability**

454 Data and scripts are available online: DOI: 10.5281/zenodo.7619485
455 (<https://zenodo.org/record/7619485>)

456 **Conflict of interest disclosure**

457 The authors declare that they comply with the PCI rule of having no financial conflicts of interest in
458 relation to the content of the article.

459 **Funding**

460 TdS benefited from a PhD grant from the CNRS. PAC and PD aknowledge recurrent funding from the
461 CNRS for this study.

462
463
464
465
466
467
468
469
470
471
472
473
474
475

476

References

477 Abalos J, Pérez i de Lanuza G, Carazo P, Font E (2016) The role of male coloration in the outcome of
478 staged contests in the European common wall lizard (*Podarcis muralis*). *Behaviour*, **153**, 607–631.

479 Abalos J, Pérez i de Lanuza G, Bartolomé A, Liehrmann O, Laakkonen H, Aubret F, Uller T, Carazo P,
480 Font E (2020) No evidence for differential sociosexual behavior and space use in the color morphs of
481 the European common wall lizard (*Podarcis muralis*). *Ecology and Evolution*, **10**, 10986–11005.

482 Adolph SC, Porter WP (1993) Temperature, activity, and lizard life histories. *American Naturalist*, **142**,
483 273–295.

484 Andrade P, Pinho C, Pérez i de Lanuza G, Afonso S, Brejcha J, Rubin C-J, Wallerman O, Pereira P,
485 Sabatino SJ, Bellati A, Pellitteri-Rosa D, Bosakova Z, Bunkis I, Carretero M-A, Feiner N, Marsik P,
486 Paupério F, Salvi D, Soler L, While GM, Uller T, Font E, Andersson L, Carneiro M (2019) Regulatory
487 changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard.
488 *Proceedings of the National Academy of Sciences of the United States of America*, **116**, 5633–5642.

489 Arbuckle K, Speed MP (2015) Antipredator defenses predict diversification rates. *Proceedings of the
490 National Academy of Sciences of the United States of America*, **112**, 13597–13602.

491 Badiane A, Martin M, Meylan S, Richard M, Decencière Ferrandière B, Le Galliard JF (2020) Male
492 ultraviolet reflectance and female mating history influence female mate choice and male mating
493 success in a polyandrous lizard. *Biological Journal of the Linnean Society*, **130**, 586–598.

494 Baha El Din SM (2007) A new lizard of the *Acanthodactylus scutellatus* group (Squamata: Lacertidae)
495 from Egypt. *Zoology in the Middle East*, **40**, 5–18.

496 Barbosa D, Font E, Desfilis E, Carretero MA (2006) Chemically mediated species recognition in closely
497 related *Podarcis* wall lizards. *Journal of Chemical Ecology*, **32**, 1587–1598.

498 Barraclough TG, Harvey PH, Nee S (1995) Sexual selection and taxonomic diversity in passerine birds.
499 *Proceedings of the Royal Society of London. Series B: Biological Sciences*, **259**, 211–215.

500 Beaulieu JM (2017) Package ‘hisse.’ Available at <https://cran.microsoft.com/snapshot/2017-09-17/web/packages/hisse/hisse.pdf>

502 Beaulieu JM, O’Meara BC (2016) Detecting hidden diversification shifts in models of trait-dependent
503 speciation and extinction. *Systematic biology*, **65**, 583–601.

504 Blanc CP (1980) Studies on the *Acanthodactylus* of Tunisia IV. Geographic distribution and habitats.
505 *Journal of Herpetology*, **14**, 391–398.

506 Bond AB (2007) The evolution of color polymorphism: crypticity, searching images, and apostatic
507 selection. *Annual Review of Ecology, Evolution, and Systematics*, **38**, 489–514.

508 Borges R, Machado JP, Gomes C, Rocha AP, Antunes A (2019) Measuring phylogenetic signal between
509 categorical traits and phylogenies. *Bioinformatics*, **35**, 1862–1869.

510 Boughman JW (2001) Divergent sexual selection enhances reproductive isolation in sticklebacks.
511 *Nature*, **411**, 944–948.

512 Boul KE, Chris Funk W, Darst CR, Cannatella DC, Ryan MJ (2007) Sexual selection drives speciation in
513 an Amazonian frog. *Proceedings of the Royal Society B: Biological Sciences*, **274**, 399–406.

514 Brambilla M, Janni O, Guidali F, Sorace A (2008) Song perception among incipient species as a
515 mechanism for reproductive isolation. *Journal of Evolutionary Biology*, **21**, 651–657.

516 Brock KM, McTavish EJ, Edwards DL (2021) Color polymorphism is a driver of diversification in the

517 lizard family Lacertidae. *Systematic Biology*, **71**, 24–39.

518 Calsbeek B, Hasselquist D, Clobert J (2010) Multivariate phenotypes and the potential for alternative
519 phenotypic optima in wall lizard (*Podarcis muralis*) ventral colour morphs. *Journal of Evolutionary
520 Biology*, **23**, 1138–1147.

521 Cardillo M, Huxtable JS, Bromham L (2003) Geographic range size, life history and rates of
522 diversification in Australian mammals. *Journal of Evolutionary Biology*, **16**, 282–288.

523 Cardoso GC, Mota PG (2008) Speciation evolution of coloration in the genus *Carduelis*. *Evolution*,
524 **62**, 753–762.

525 Carretero MA (2008) An integrated assessment of a group with complex systematics: the
526 Iberomaghrebian lizard genus *Podarcis* (Squamata, Lacertidae). *Integrative Zoology*, **3**, 247–266.

527 Chouteau M, Llaurens V, Piron-Prunier F, Joron M (2017) Polymorphism at a mimicry supergene
528 maintained by opposing frequency-dependent selection pressures. *Proceedings of the National
529 Academy of Sciences*, **114**, 8325–8329.

530 Cooney CR, Thomas GH (2020) Heterogeneous relationships between rates of speciation and body
531 size evolution across vertebrate clades. *Nature Ecology & Evolution*, **5**, 101–110.

532 Cooney CR, Tobias JA, Weir JT, Botero CA, Seddon N (2017) Sexual selection, speciation and
533 constraints on geographical range overlap in birds. *Ecology Letters*, **20**, 863–871.

534 Cooper Jr WE, Pèrez-Mellado V (2002) Pheromonal discriminations of sex, reproductive condition,
535 and species by the lacertid lizard *Podarcis hispanica*. *Journal of Experimental Zoology*, **292**, 523–527.

536 Corl A, Davis AR, Kuchta SR, Comendant T, Sinervo B (2010a) Alternative mating strategies and the
537 evolution of sexual size dimorphism in the side-blotched lizard, *Uta stansburiana*: a population-level
538 comparative analysis. *Evolution*, **64**, 79–96.

539 Corl A, Davis AR, Kuchta SR, Sinervo B (2010b) Selective loss of polymorphic mating types is
540 associated with rapid phenotypic evolution during morphic speciation. *Proceedings of the National
541 Academy of Sciences of the United States of America*, **107**, 4254–4259.

542 Corl A, Lancaster LT, Sinervo B (2012) Rapid formation of reproductive isolation between two
543 populations of side-blotched lizards, *Uta stansburiana*. *Copeia*, **2012**, 593–602.

544 Coyne JA, Orr HA (1989) Patterns of speciation in *Drosophila*. *Evolution*, **43**, 362–381.

545 Diaz LFH, Harmon LJ, Sugawara MTC, Miller ET, Pennell MW (2019) Macroevolutionary diversification
546 rates show time dependency. *Proceedings of the National Academy of Sciences of the United States
547 of America*, **116**, 7403–7408.

548 Doherty PF, Sorci G, Royle JA, Hines JE, Nichols JD, Boulinier T (2003) Sexual selection affects local
549 extinction and turnover in bird communities. *Proceedings of the National Academy of Sciences of the
550 United States of America*, **100**, 5858–5862.

551 Forsman A, Ahnesjö J, Caesar S, Karlsson M (2008) A model of ecological and evolutionary
552 consequences of color polymorphism. *Ecology*, **89**, 34–40.

553 Gabirot M, López P, Martín J (2012) Differences in chemical sexual signals may promote reproductive
554 isolation and cryptic speciation between Iberian Wall Lizard populations. *International Journal of
555 Evolutionary Biology*, **2012**, 1–13.

556 Gabirot M, López P, Martín J (2013) Female mate choice based on pheromone content may inhibit
557 reproductive isolation between distinct populations of Iberian wall lizards. *Current Zoology*, **59**, 210–
558 220.

559 Galeotti P, Sacchi R, Pellitteri-Rosa D, Bellati A, Cocca W, Gentilli A, Scali S, Fasola M (2013) Colour
560 polymorphism and alternative breeding strategies: effects of parent's colour morph on fitness traits
561 in the Common Wall Lizard. *Evolutionary Biology*, **40**, 385–394.

562 Gallozzi F, Colangelo P, Senczuk G, Castiglia R (2022) Phylogeographic and bioclimatic determinants
563 of the dorsal pattern polymorphism in the Italian Wall Lizard, *Podarcis siculus*. *Diversity*, **14**, 519.

564 Galoyan EA, Tsellarius EY, Arakelyan MS (2019) Friend-or-foe? Behavioural evidence suggests
565 interspecific discrimination leading to low probability of hybridization in two coexisting rock lizard
566 species (Lacertidae, *Darevskia*). *Behavioral Ecology and Sociobiology*, **73**, 1–10.

567 Garcia-Porta J, Irisarri I, Kirchner M, Rodríguez A, Kirchhof S, Brown JL, MacLeod A, Turner AP,
568 Ahmadzadeh F, Albaladejo G, Crnobrnja-Isailovic J, De la Riva I, Fawzi A, Galán P, Göçmen B, Harris
569 DJ, Jiménez-Robles O, Joger U, Jovanović Glavaš O, Karış M, Koziel G, Künzel S, Lyra M, Miles D,
570 Nogales M, Oğuz MA, Pafilis P, Rancilhac L, Rodríguez N, Rodríguez Concepción B, Sanchez E, Salvi D,
571 Slimani T, S'khifa A, Qashqaei AT, Žagar A, Lemmon A, Moriarty Lemmon E, Carretero MA, Carranza S,
572 Philippe H, Sinervo B, Müller J, Vences M, Wollenberg Valero KC et al. 2019. Environmental
573 temperatures shape thermal physiology as well as diversification and genome-wide substitution rates
574 in lizards. *Nature Communications*, **10**, 1–12.

575 Gomes ACR, Sorenson MD, Cardoso GC (2016) Speciation is associated with changing ornamentation
576 rather than stronger sexual selection. *Evolution*, **70**, 2823–2838.

577 Gray DA, Cade WH (2000) Sexual selection and speciation in field crickets. *Proceedings of the
578 National Academy of Sciences of the United States of America*, **97**, 14449–14454.

579 Haas G (1951) Remarks on the status of the lizard *Eremias olivieri* Audouin. *Copeia*, **1951**, 274–276.

580 Houle D, Kondrashov AS (2002) Coevolution of costly mate choice and condition-dependent display
581 of good genes. *Proceedings of the Royal Society B: Biological Sciences*, **269**, 97–104.

582 Huang H, Rabosky DL (2014) Sexual selection and diversification: reexamining the correlation
583 between dichromatism and speciation rate in birds. *The American Naturalist*, **184**, E101–E114.

584 Hugall AF, Stuart-Fox D (2012) Accelerated speciation in colour-polymorphic birds. *Nature*, **485**, 631–
585 634.

586 Huyghe K, Small M, Vanhooydonck B, Herrel A, Tadić Z, Van Damme R, Backeljau T (2010) Genetic
587 divergence among sympatric colour morphs of the Dalmatian wall lizard (*Podarcis melisellensis*).
588 *Genetica*, **138**, 387–393.

589 Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and
590 time. *Nature*, **491**, 444–448.

591 Kennedy JD, Borregaard MK, Jónsson KA, Holt B, Fjeldså J, Rahbek C (2017) Does the colonization of
592 new biogeographic regions influence the diversification and accumulation of clade richness among
593 the Corvids (Aves: Passeriformes)? *Evolution*, **71**, 38–50.

594 Khannoob ER, El-Gendy A, Hardege JD (2011) Scent marking pheromones in lizards: cholesterol and
595 long chain alcohols elicit avoidance and aggression in male *Acanthodactylus boskianus* (Squamata:
596 Lacertidae). *Chemoecology*, **21**, 143–149.

597 Kokko H, Brooks R (2003) Sexy to die for? Sexual selection and the risk of extinction on JSTOR.
598 *Annales Zoologici Fennici*, **40**, 207–219.

599 Kraaijeveld K, Kraaijeveld-Smit FJL, Maan ME (2011) Sexual selection and speciation: The comparative
600 evidence revisited. *Biological Reviews*, **86**, 367–377.

601 Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, Klages S, Timmermann B, Gahr M

602 (2021) An unbiased molecular approach using 3'-UTRs resolves the avian family-level Tree of Life.
603 *Molecular Biology and Evolution*, **38**, 108–127.

604 Kusche H, Elmer KR, Meyer A (2015) Sympatric ecological divergence associated with a color
605 polymorphism. *BMC Biology*, **13**, 82.

606 Lattanzio MS, Miles DB (2016) Trophic niche divergence among colour morphs that exhibit
607 alternative mating tactics. *Royal Society Open Science*, **3**, 150531.

608 Lewin A, Feldman A, Bauer AM, Belmaker J, Broadley DG, Chirio L, Itescu Y, LeBreton M, Maza E,
609 Meirte D, Nagy ZT, Novosolov M, Roll U, Tallowin O, Trape J-F, Vidan E, Meiri S (2016) Patterns of
610 species richness, endemism and environmental gradients of African reptiles. *Journal of
611 Biogeography*, **43**, 2380–2390.

612 Liedtke HC, Müller H, Rödel M-O, Menegon M, Gonwouo LN, Barej MF, Gvoždík V, Schmitz
613 A, Channing A, Nagel P, Loader SP (2016) No ecological opportunity signal on a continental scale?
614 Diversification and life-history evolution of African true toads (Anura: Bufonidae). *Evolution*, **70**,
615 1717–1733.

616 Lindgren AR, Giribet G, Nishiguchi MK (2004) A combined approach to the phylogeny of Cephalopoda
617 (Mollusca). *Cladistics*, **20**, 454–486.

618 Louca S, Pennell MW (2020) Extant timetrees are consistent with a myriad of diversification histories.
619 *Nature*, **580**, 502–505.

620 Lynch VJ (2009) Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling
621 during the Cenozoic. *Evolution*, **63**, 2457–2465.

622 Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character's effect on speciation and
623 extinction. *Systematic Biology*, **56**, 701–710.

624 Martín J, López P (2006) Pre-mating mechanisms favouring or precluding speciation in a species
625 complex: chemical recognition and sexual selection between types in the lizard *Podarcis hispanica*.
626 *Evolutionary Ecology Research*, **8**, 643–658.

627 Masta SE, Maddison WP (2002) Sexual selection driving diversification in jumping spiders.
628 *Proceedings of the National Academy of Sciences of the United States of America*, **99**, 4442–4447.

629 McLain DK, Moulton MP, Redfearn TP (1995) Sexual selection and the risk of extinction of introduced
630 birds on oceanic islands. *Oikos*, **74**, 27–34.

631 Mejías MA, Roncal J, Imfeld TS, Boisen S, Wilson DR (2020) Relationships of song structure to
632 phylogenetic history, habitat, and morphology in the vireos, greenlets, and allies (Passeriformes:
633 Vireonidae). *Evolution*, **74**, 2494–2511.

634 Naisbit RE, Jiggins CD, Mallet J (2001) Disruptive sexual selection against hybrids contributes to
635 speciation between *Heliconius cydno* and *Heliconius melpomene*. *Proceedings of the Royal Society B:
636 Biological Sciences*, **268**, 1849–1854.

637 Names G, Martin M, Badiane A, Le Galliard JF (2019) The relative importance of body size and UV
638 coloration in influencing male-male competition in a lacertid lizard. *Behavioral Ecology and
639 Sociobiology*, **73**, 1–14.

640 Nouira S, Blanc CP (2003) Distribution spatiale des Lacertidés (Sauria, Reptilia) en Tunisie ;
641 caractéristiques des biotopes et rôle des facteurs écologiques. *Ecologia mediterranea*, **29**, 71–86.

642 Olendorf R, Rodd FH, Punzalan D, Houde AE, Hurt C, Reznick DN, Hughes KH (2006) Frequency-
643 dependent survival in natural guppy populations. *Nature*, **441**, 633–636.

644 Olsson M, Andersson S, Wapstra E (2011) UV-deprived coloration reduces success in mate acquisition
645 in male sand lizards (*Lacerta agilis*). *PLoS ONE*, **6**, e19360.

646 Ortega J, López P, Martín J (2014) Conspicuous blue tails, dorsal pattern morphs and escape
647 behaviour in hatchling Iberian wall lizards (*Podarcis hispanicus*). *Biological Journal of the Linnean
648 Society*, **113**, 1094–1106.

649 Ortega J, Pellitteri-Rosa D, López P, Martín J (2015) Dorsal pattern polymorphism in female Iberian
650 wall lizards: differences in morphology, dorsal coloration, immune response, and reproductive
651 investment. *Biological Journal of the Linnean Society*, **116**, 352–363.

652 Panhuis TM, Butlin R, Zuk M, Tregenza T (2001) Sexual selection and speciation. *Trends in Ecology &
653 Evolution*, **16**, 364–371.

654 Pérez i de Lanuza G, Carazo P, Font E (2014) Colours of quality: Structural (but not pigment)
655 coloration informs about male quality in a polychromatic lizard. *Animal Behaviour*, **90**, 73–81.

656 Pinho C, Kaliontzopoulou A, Carretero MA, Harris DJ, Ferrand N (2009) Genetic admixture between
657 the Iberian endemic lizards *Podarcis bocagei* and *Podarcis carbonelli* : evidence for limited natural
658 hybridization and a bimodal hybrid zone. *Journal of Zoological Systematics and Evolutionary
659 Research*, **47**, 368–377.

660 Powney GD, Grenyer R, Orme CDL, Owens IPF, Meiri S (2010) Hot, dry and different: Australian lizard
661 richness is unlike that of mammals, amphibians and birds. *Global Ecology and Biogeography*, **19**,
662 386–396.

663 Price T (1998) Sexual selection and natural selection in bird speciation. *Philosophical Transactions of
664 the Royal Society of London. Series B: Biological Sciences*, **353**, 251–260.

665 Rabosky DL (2014) Automatic detection of key innovations, rate shifts, and diversity-dependence on
666 phylogenetic trees. *PLoS ONE*, **9**, e89543.

667 Rabosky DL, Donnellan SC, Talaba AL, Lovette IJ (2007) Exceptional among-lineage variation in
668 diversification rates during the radiation of Australia's most diverse vertebrate clade. *Proceedings of
669 the Royal Society B: Biological Sciences*, **274**, 2915–2923.

670 Rabosky DL, Goldberg EE (2017) FiSSE: A simple nonparametric test for the effects of a binary
671 character on lineage diversification rates. *Evolution*, **71**, 1432–1442.

672 Rabosky DL, Huang H (2016) A robust semi-parametric test for detecting trait-dependent
673 diversification. *Systematic Biology*, **65**, 181–193.

674 Revell LJ (2012) Phytools: An R package for phylogenetic comparative biology (and other things).
675 *Methods in Ecology and Evolution*, **3**, 217–223.

676 Rifai L, Modrý D, Necas P, Amr ZS (2003) The occurrence of *Acanthodactylus hardyi* Haas, 1957 in the
677 Hashemite Kingdom of Jordan and notes on its ecology. *Zoology in the Middle East*, **28**, 33–38.

678 Ritchie MG (2007) Sexual selection and speciation. *Annual Review of Ecology, Evolution, and
679 Systematics*, **38**, 79–102.

680 Sacchi R, Ghitti M, Scali S, Mangiacotti M, Zuffi MAL, Sannolo M, Coladonato AJ, Pasquesi G, Bovo
681 M, Pellitteri-Rosa D (2015) Common wall lizard females *Podarcis muralis* do not actively choose
682 males based on their colour morph. *Ethology*, **121**, 1145–1153.

683 Sacchi R, Coladonato AJ, Ghitti M, Mangiacotti M, Scali S, Bovo M, Zuffi M (2018) Morph-specific
684 assortative mating in common wall lizard females. *Current Zoology*, **64**, 449–453.

685 Scali S, Sacchi R, Mangiacotti M, Pupin F, Gentilli A, Zucchi C, Sannolo M, Pavesi M, Zuffi MAL (2016)

686 Does a polymorphic species have a 'polymorphic' diet? A case study from a lacertid lizard. *Biological
687 Journal of the Linnean Society*, **117**, 492–502.

688 Schleich HH, Kaestle W, Kabisch K (1996) *Amphibians and reptiles of North Africa*, Koeltz, Konigstein.

689 Seehausen O (2000) Explosive speciation rates and unusual species richness in haplochromine cichlid
690 fishes: Effects of sexual selection. *Advances in Ecological Research*, **31**, 237–274.

691 Sinervo B, Lively CM (1996) The rock-paper-scissors game and the evolution of alternative male
692 strategies. *Nature*, **380**, 240–243.

693 Song H, Bucheli SR (2010) Comparison of phylogenetic signal between male genitalia and non-genital
694 characters in insect systematics. *Cladistics*, **26**, 23–35.

695 Svedin N, Wiley C, Veen T, Gustafsson L, Qvarnström A (2008) Natural and sexual selection against
696 hybrid flycatchers. *Proceedings of the Royal Society B: Biological Sciences*, **275**, 735–744.

697 Takahashi Y, Noriyuki S (2019) Colour polymorphism influences species' range and extinction risk.
698 *Biology Letters*, **15**, 20190228.

699 Title PO, Rabosky DL (2019) Tip rates, phylogenies and diversification: what are we estimating, and
700 how good are the estimates? *Methods in Ecology and Evolution*, **10**, 821–834.

701 Tran, LAP (2016) Interaction between digestive strategy and niche specialization predicts speciation
702 rates across herbivorous mammals. *American Naturalist*, **187**, 468–480.

703 Uetz P, Freed P, Hošek J (2020) *The Reptile Database*. <http://www.reptile-database.org>.

704 Vamosi SM, Schlüter D (1999) Sexual selection against hybrids between sympatric stickleback
705 species: evidence from a field experiment. *Evolution*, **53**, 874–879.

706 Werner YL (1982) Herpetofaunal survey of the Sinai Peninsula (1966-77), with emphasis on the
707 Saharan sand community. In: *Herpetological communities: A symposium of the Society for the Study
708 of Amphibians and Reptiles and the Herpetologists' League*, August 1977 (Ed. Scott, N.J., Jr.)
709 Washington, US Fish and Wildlife Service, Wildlife Research Report 13, pp. 153-161.

710 West-Eberhard, MJ (1986) Alternative adaptations, speciation, and phylogeny. (A review).
711 *Proceedings of the National Academy of Sciences of the United States of America*, **83**, 1388–1392.

712 Whitney JL, Donahue MJ, Karl SA (2018) Niche divergence along a fine-scale ecological gradient in
713 sympatric color morphs of a coral reef fish. *Ecosphere*, **9**, e02015.

714