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1  | INTRODUC TION

During the late Neogene, the Mediterranean basin was subjected to 
cyclical sea level fluctuations caused by climatic instability (Peirano 
et al., 2004). Marine regressions facilitated the exchange of biota 
between islands and the continent, but throughout the Pleistocene 
some islands (e.g., the Balearic Islands) remained isolated (Bover, 
Quintana, & Alcover, 2008; Marra, 2013). Therefore, some 
Mediterranean islands support rich assemblages, composed by sub-
sets of those from the nearest continental land, whereas others are 

poorer, predominantly composed by species arrived by Messinian 
dispersal (Sara & Morand, 2002). During the Holocene, enrichment 
and homogenization of the insular assemblages occurred following 
the beginning of the anthropic colonization of Mediterranean islands, 
which particularly affected bird and mammal faunas, but also large 
reptiles (Bonfiglio, Marra, & Masini, 2000; Vigne, 1992). The fauna 
of the Mediterranean islands was later affected by the maritime 
trade that followed expansion of the Roman Era at approximately 
2,300 years before present (BP). This led to extensive translocation 
of species from the continent to the islands in a process that has 
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Abstract
Mediterranean islands have complex reptile assemblages, but little is known about 
the factors that determine their organization. In this study, the structure of as-
semblages of Squamata was evaluated based on their species richness and two 
measures of phylogenetic diversity (variability and clustering). I evaluated the com-
position of the assemblages comparing distinct biogeographic subregions within the 
Mediterranean: Adriatic, Aegean, Balearic, Corsica–Sardinia, Crete, Gulf of Gabés, 
Ionian Sea, Ligurian Sea, Malta, Sicily, and Tyrrhenian Sea. The effect of island en-
vironments and geographical isolation on the diversity metrics was assessed using 
generalized linear models. The analyses indicated that species richness was mostly 
influenced by island area and geographical isolation. Assemblages on smaller islands 
were poorer in species and phylogenetically dispersed, possibly as an effect of inter-
specific competition. The species composition of the assemblages was determined 
by similar environmental drivers within the biogeographic subregions, including is-
land area, island elevation, geographical isolation, and aridity. In several subregions, 
significant patterns of phylogenetic attraction were found in species co-occurrences, 
caused by the limits imposed by the island size on large predatory species.
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continued to the present (Insacco, Spadola, Russotto, & Scaravelli, 
2015; Spaneli & Lymberakis, 2014; Traveset et al., 2009).

The composition of biotic communities is determined by the 
island geographic isolation and colonization history but also by 
the constraints imposed by limited resources (Goldstein, 1975; 
MacArthur & Wilson, 1967). Insular ecosystems saturate faster than 
those on continents (Terborgh & Faaborg, 1980), and small islands 
typically contain impoverished assemblages composed of trophic 
generalists (Holt, Lawton, Polis, & Martinez, 1999). Island biotic 
communities are also characterized by their fragility and dynamism 
and can be rapidly unbalanced by the extinction or addition of a sin-
gle species (Corlett, 2010; Simberloff, 2000).

Here, I studied insular assemblages of Squamata (Reptilia), focusing 
in the species diversity and the environmental effects on the assem-
bly structure. Morphologically very divergent species were included in 
the study (i.e., “lizards", amphisbaenians, and snakes; Figure 1) because 
phylogenetic analyses demonstrated that the quadruped group typi-
cally referred to as “lizards” is paraphyletic (Reeder et al., 2015).

The patterns of species coexistence were used to test hy-
potheses on the effect of insularity. The effect on phylogenetic 
diversity was investigated to assess whether the assemblages 
were composed of close or distant relatives (Ives & Helmus, 2010). 
Phylogenetically dispersed assemblages are expected when com-
petition drives species packing, as related species strongly overlap 
in the use of resources (Burns & Strauss, 2011; Morlon, Kefi, & 
Martinez, 2014). Phylogenetically clustered assemblages are ex-
pected if the traits that favor dispersal are shared among close 
relatives (Weigelt et al., 2015). In mammals, it has been shown that 
island assemblages are organized following a phylogenetic struc-
ture (Cardillo, Gittleman, & Purvis, 2008), but it is unknown if this 
also occurs with reptiles.

My hypothesis was that the Squamata assemblages would be 
poorer in species and phylogenetically structured on small isolated is-
lands, because of habitat constraints and dispersal filtering (Hypothesis 
1). On small and environmentally homogeneous islands, negative inter-
specific associations may also occur among species that are not phylo-
genetically close but are in the same trophic rank, or involve predators 

and their prey (Savidge, 1987). Such interactions have been invoked 
to explain the assemblage composition on several Mediterranean is-
lands (Grano, Cattaneo, & Cattaneo, 2013; Pérez-Mellado, Corti, & Lo 
Cascioa, 1997). For this reason, species co-occurrences determined 
by phylogenetic relationships and negative interspecific associations 
were expected to appear (Hypothesis 2).

2  | MATERIAL AND METHODS

2.1 | Study system

The study region is the basin of the Mediterranean Sea (2.5 × 106 km2). 
This region includes islands ranging in size from 1,000 m2 (Torre 
Scuola, Liguria) to 25,711 km2 (Sicily). Mediterranean islands have 
a high diversity of Squamata that exceeds 20 species in those of the 
Aegean and Ionian seas (Chondropoulos, 1986, 1989). The predomi-
nant climate in the region is Mediterranean, involving two Köppen 
classification subtypes (Csa, and the transitional temperate variant 
Csb), although in the southernmost islands (e.g., Alboran, Formentera, 
Pantelleria, Lampedusa, Cyprus, and Salamis) the climate is classified as 
steppic (Kriticos et al., 2012). The biotic diversity of the Mediterranean 
basin is structured in well-defined biogeographical subregions (Coll et 
al., 2010; Kougioumoutzis et al., 2017; Lloret et al., 2005). In this study, 
the subregion borders proposed in these studies were used (Figure 2).

2.2 | Assemblage composition and 
phylogenetic data

Data on the occurrence of 104 species of Squamata on 455 islands 
were obtained from biogeographic atlases and scientific papers (see 
the references provided in Supporting Information 1). Taxonomic clas-
sification followed Speybroeck, Beukema, Bok, and Voort (2016) and 
Uetz, Freed, and Hošek (2019). The phylogenetic relationships between 
species pairs were obtained using the TimeTree database (Kumar, 
Stecher, Suleski, & Hedges, 2017). This database provides estimates 
of the times of divergence between species pairs, based on a synthesis 
of previous studies (Hedges, Marin, Suleski, Paymer, & Kumar, 2015). 
The phylogenetic tree built using MEGA-X 10.0.5 (Kumar, Stecher, Li, 
Knyaz, & Tamura, 2018) is shown in Supporting Information 2.

The matrix of pairwise phylogenetic distances was used to cal-
culate the phylogenetic species variability (PSV) and phylogenetic 
species clustering (PSC) (Helmus, Bland, Williams, & Ives, 2007). 
PSV is statistically independent of species richness and measures 
the mean relatedness among all the species composing an assem-
blage (Helmus et al., 2007). PSC measures the phylogenetic distance 
between the nearest relatives within an assemblage. Both metrics 
tend to a value approaching zero when the species are phyloge-
netically close and to a value of one if they are not closely related 
(Helmus et al., 2007). These metrics were calculated using the pi-
cante package (Kembel et al., 2010) in the R environment (R Core 
Development Team, 2019).

F I G U R E  1   Organism photograph: The endemic island lizard 
Podarcis waglerianus (Cefalù, Sicily). Credit: Daniel Escoriza
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2.3 | Environmental data

Several ensembles of environmental variables were selected because 
of their likely influence on island biotic communities and reptile oc-
currence in the Mediterranean ecoregion (Escoriza, 2018; Raposeiro, 
Hughes, & Costa, 2013). These variables describe the physical (surface 
area and elevation) and climate characteristics of the islands, and their 
geographical isolation relative to the continent or larger islands. The 
physical data for the islands were obtained based on atlases (Koster, 
2005) and Google Earth Pro 7.3.2.5776 (Google LLC). Climate was 
characterized using an aridity index (the ratio between annual accumu-
lated precipitation and potential evapotranspiration, with higher val-
ues indicating a lower deficit of environmental water) and mean annual 
temperatures (measured in °C), both obtained from GIS-modelled data 
(Fick & Hijmans, 2017; Zomer, Trabucco, Bossio, & Verchot, 2008). The 
data (ESRI Grid, 1,000 m pixel−1 resolution) were downloaded from 
the WorldClim Version2 database (https ://world clim.org/version2) 
and Global Aridity and PET database  (https ://cgiar csi.commu nity/
data/global-aridi ty-and-pet-datab ase/).

The geographical isolation of each island was characterized 
based on the shortest distance (in km) of the island from the main-
land and larger islands (i.e., those larger than 5 km2) and the average 
depth of the sea (in m) within a 5–30 km radius of the island. The 
geographical distances were measured using Google Earth Pro. The 
mean depth of the seabed is a proxy for the susceptibility of these 
islands to be colonized during regression of the epicontinental sea 
(Chiocci, Ercilla, & Torre, 1997). The mean depth of the sea was cal-
culated from a digital model of the sea floor (Becker et al., 2009), 
downloaded from the GEBCO database (https ://www.gebco.net/). 
Data from GIS databases were extracted using the Quantum-GIS 
3.6.0 package (QGIS Development Team, 2019).

2.4 | Data analysis

The analyses evaluated: (a) the effect of the island environment and 
its geographical isolation on the diversity and species composition 
of the assemblages, and (b) patterns of species spatial associations 
(co-occurrences), and the phylogenetic structure. Prior to analysis, 
highly correlated predictors (r ≥ 0.75) were removed following con-
struction of a correlation matrix. Variables that showed absolute 
skew and kurtosis values indicating non-normality were logarithmi-
cally transformed, if data were highly skewed to the right (Lewis, 
1977). All predictor variables were normalized.

The association between the environmental predictors and di-
versity metrics (species richness, PSV, and PSC) were evaluated 
using generalized linear models (GLMs). The relative contribution 
of the pooled variables was evaluated using automated model se-
lection and model averaging for GLMs (Calcagno & de Mazancourt, 
2010). The best candidate models were obtained using the set of all 
variables, and the models were ranked using the small-sample-cor-
rected Akaike information criterion (AICc; Burnham & Anderson, 
2002). The statistical importance of the variables was determined 
according to their model-averaged weighting in the 100 best mod-
els. These analyses were conducted using the glmulti (Calcagno & de 
Mazancourt, 2010) package in R.

The effect of the environmental gradient on the composition 
of an assemblage (species presence/absence matrix) was evalu-
ated between those sets of species that overlap geographically, 
grouped by subregions. This analysis was conducted using dis-
tance-based redundancy analysis (dbRDA) (Legendre & Anderson, 
1999), after transformation of the binary matrix of species oc-
currences into a matrix of Sørensen distances (Faith, Minchin, & 
Belbin, 1987). Determination of the most significant associations 

F I G U R E  2   Map of the study region showing the biogeographical subregions and the respective number of islands (in brackets). ALB, 
Alboran sea; BAL, Balearic sea; CAD, central Adriatic; CAE, central Aegean; COR, Corso-Sardinian; CRE, Crete; CYP, Cyprus; GAB, Gulf 
of Gabès; IBE, mainland Spain; ION, Ionian sea; LEV, Levantine sea; LIG, Ligurian-Provence; MAL, Malta-Lampedusa; MAR, Marmara sea; 
NAD, northern Adriatic; NAE, northern Aegean; NMI, northern mainland Greece; SAE, southern Aegean; SIC, Sicily-Aeolian; SMI, southern 
mainland Greece; TUN, Tunisia; TYR, Tyrrhenian sea (mainland Italy)

https://worldclim.org/version2
https://cgiarcsi.community/data/global-aridity-and-pet-database/
https://cgiarcsi.community/data/global-aridity-and-pet-database/
https://www.gebco.net/
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was based on the AIC-like statistics and forward variable selection 
after 999 permutations (Legendre, Oksanen, & Braak, 2011). These 
analyses were conducted using the vegan package (Oksanen et al., 
2019) in R.

The association between co-occurrences and phylogenetic 
distances was evaluated within the biogeographic subregions that 
comprised at least eight islands. The interspecific distances based 
on co-occurrences were obtained using the Schoener Cij index 
(Schoener, 1970), and the effect of phylogenetic distance was de-
termined using quantile regression (Lovette & Hochachka, 2006). 
This effect was assessed for the 25, 50, and 75th percentiles of the 
Cij distribution. The statistical significance was determined using 
a null model that maintained sample species richness (Savage & 
Cavender-Bares, 2012). The statistical significance of the co-oc-
currence of species was determined using probabilistic analysis 
(Veech, 2013). These analyses were conducted using the picante 
and co-occur packages (Griffith, Veech, & Marsh, 2016) in R.

3  | RESULTS

The correlation matrix showed that no variable had a very high 
correlation (r ≥ 0.75) with those previously included in the mod-
els, so no variable was removed from the analysis. The results of 
the GLM analysis showed that the variables best explaining the 
variation in species richness were island area and mean annual 
temperature, which had positive influences, and mean sea depth 
in a 5 km radius and the distance to the continent or larger is-
lands, which had negative influences (Table 1). The variables best 
explaining variation in the PSV were the aridity index and island 
area (negative influences), and mean sea depth in a 5–30 km radius 

and distance to the continent (positive influences; Table 1). The 
variables best explaining variation in the PSC were island area and 
the aridity index (negative influences), and mean sea depth in a 
5 km radius and distance to the continent or larger islands (positive 
influences; Table 1).

The species composition of the assemblages within subregions 
was largely determined by the island area (91.7% of subregions), 
aridity index (33.3%), mean sea depth in a 30 km radius (25%), 
mean sea depth in a 5 km radius (16.7%), island elevation (16.7%), 
distance to the continent (8.3%), and mean annual temperature 
(8.3%) (Table 2). Quantile regression indicated that there was a 
random phylogenetic effect on the co-occurrences, with several 
exceptions in the upper quartile (Table 3). All significant effects 
involved a negative association between co-occurrence and phy-
logenetic distance (phylogenetic attraction) (Table 3). Most of 
the co-occurrences showed no statistical significance (Figure 3). 
Significant positive associations were detected between several 
pairs of species of snake and lizard (Figure 3). Significant negative 
associations were only detected between some pairs of conge-
neric lizards (genus Podarcis; Figure 3 and Table 4).

4  | DISCUSSION

The Mediterranean archipelagos provide an interesting example of 
the interacting mechanisms that shape island biotic communities, 
for their physical heterogeneity and distinct colonization histo-
ries (Blondel, Chessel, & Frochot, 1988). In this study, the analyses 
showed that the area of the islands and their geographical isolation 
determined the diversity of the Squamata assemblages, as expected. 
These factors were of similar importance and, for this reason, large 

Diversity metric
Best subset of 
predictors z-value p IMP100

Species richness Island area 27.13 2−16 1.00

Distance to larger island –3.89 .0001 0.99

Distance to continent –2.74 .006 0.92

Mean sea depth 5 km –2.47 .014 0.80

Mean temperature 2.08 .038 0.61

Phylogenetic species variability Aridity index –6.08 3−9 1.00

Island area –5.16 4−6 0.99

Distance to continent 4.02 .00007 0.99

Mean sea depth 30 km 1.89 .06 0.77

Mean sea depth 5 km 1.64 .102 0.65

Phylogenetic species clustering Island area –15.13 2−16 1.00

Distance to continent 3.64 .0003 0.99

Mean sea depth 5 km 3.62 .0003 0.98

Aridity index –3.97 .00009 0.96

Distance to larger island 2.55 .01 0.90

Note: The statistics of the best candidate model and the model-averaged importance (IMP100) for 
the variables in the 100 best models are shown.

TA B L E  1   General patterns of diversity 
of Squamata in the Mediterranean islands, 
assessed by automated GLM selection
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and orographically heterogeneous islands (e.g., Crete, Mallorca, 
Sardinia, and Sicily) show relatively species-poor assemblages com-
pared with Ionian or Aegean islands (e.g., Korfú or Samos), which 
are smaller but situated close to the continent. Crete, Mallorca, 
and Sardinia were completely isolated by the end of the Messinian 
age and had impoverished and unbalanced faunas until the Late 
Pleistocene—Holocene (Krijgsman, Hilgen, Raffi, Sierro, & Wilson, 
1999; Melis, Palombo, Ghaleb, & Meloni, 2016; Meulenkamp, 
Wortel, Wamel, Spakman, & Strating, 1988). Although currently sit-
uated very close to the continent, Sicily possibly had its colonization 
hindered by the fragmentation of Calabria into several islands until 
the mid-Pleistocene, and the continuous persistence of the Strait of 
Messina throughout the Late Glacial (Marra, 2009; Palombo, 2018).

The colonization history has left its footprint in the organiza-
tion of the Squamata assemblages. The analyses indicated that 
islands at a greater distance from the continent and surrounded 

by deeper water have comparatively species-poorer and phyloge-
netically more dispersed assemblages, according to both PSV and 
PSC. This suggests that in the Mediterranean no Squamata lin-
eages are having greater dispersal/colonizing capacity than others. 
Islets also showed impoverished assemblages, mostly composed 
of distantly related species. Many of these islets are situated 
near the continent, so could be colonized during the glacial-eu-
static marine regressions by mainland species (Fattorini, 2010; 
Kougioumoutzis et al., 2017). The simplified reptile assemblages 
on these islets could be the result of interspecific competition, 
intensified after the separation of the islet from the continental 
land. Similarly, higher levels of aridity were associated with phy-
logenetic dispersed assemblages. This could be the consequence 
of more intense competitive interactions caused by the lower 
primary productivity in dry environments (Le Houérou, Bingham, 
& Skerbek, 1988), but could also reflect the presence of more 

Subregion Predictors R2 adjusted AIC F p

Balearic Distance to 
continent

0.62 175.9 133.8 .002

Island area 0.67 166.9 11.3 .004

Mean sea depth 
30 km

0.68 164.6 4.3 .044

Central Adriatic Island area 0.30 21.0 8.1 .002

Aridity index 0.40 19.0 3.7 .01

Central Aegean Island area 0.17 193.5 16.5 .002

Aridity index 0.23 189.1 6.4 .004

Mean sea depth 
30 km

0.26 187.1 3.9 .002

Mean sea depth 
5 km

0.29 185.7 3.3 .022

Corsica-Sardinia Island area 0.40 61.7 33.2 .002

Annual 
temperature

0.44 58.7 4.9 .022

Ionian Sea Mean sea depth 
30 km

0.14 24.6 3.6 .006

Aridity index 0.29 22.1 4.2 .004

Island area 0.47 18.0 5.6 .002

Ligurian Sea-Provence Island area 0.18 12.7 5.0 .008

Aridity index 0.33 9.7 4.9 .006

Northern Adriatic Island elevation 0.29 61.0 15.2 .002

Northeastern Aegean Island area 0.28 51.3 12.2 .002

Island elevation 0.32 50.4 2.8 .046

Southeastern Aegean Island area 0.27 14.8 6.1 .002

Sicily Island area 0.17 28.6 5.9 .002

Mean sea depth 
5 km

0.36 23.0 7.9 .002

South mainland Greece Island area 0.11 15.7 2.5 .03

Tyrrhenian Sea (Italian 
Peninsula)

Island area 0.18 45.4 7.2 .004

Note: Some subregions are not shown because no statistically significant associations were found 
at α = 0.05.

TA B L E  2   Results of the distance-
based redundancy analysis assessing 
the effect of island characteristics and 
the assemblage composition within 
subregions
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distinct evolutionary lineages in the southern Mediterranean re-
gion (Pyron, Burbrink, & Wiens, 2013).

Analysis of the effect of the environmental gradient on species 
occurrences supported these general conclusions. The area and to-
pography of the islands, their relative geographical isolation, and 
the aridity determined the species identity in the assemblages in 
the distinct Mediterranean subregions. This is because these fac-
tors determined the dispersal success and the long-term persistence 
of island populations, following the disappearance of land bridges 
(Foufopoulos, Kilpatrick, & Ives, 2010).

Co-occurrence analysis revealed phylogenetic attraction, mostly 
in the upper quartile, for the Balearic, Sicilian, north Adriatic, north-
ern Aegean, and Maltese archipelagos, and the Tyrrhenian pericon-
tinental islands. The larger islands of these archipelagos included 

several cohorts of species that are completely absent on islands that 
are about 5 km2 or less in size (Chondropoulos, 1989; Fattorini, 2010; 
Koren, Laus, Buric, & Kuljeric, 2011; Lanfranko, 1955; Massa, 2008; 
Pinya & Carretero, 2011; Tóth, Grillitsch, Farkas, Gál, & Sušić, 2006). 
These cohorts are mostly composed of colubrid snakes occupying 
higher trophic ranks and/or with specialized diets (Geniez, 2015). The 
effect of the species area of the islands could be greater for preda-
tory species and those having restricted diets, and consequently sev-
eral species of snake could not maintain populations on small islands 
(Holt et al., 1999). This has been empirically demonstrated for island 
populations of some Mediterranean snakes, and these species adapt 
by shifting their diet or reducing body size (Filippi, Capula, & Luiselli, 
2003; Luiselli, Petrozzi, Mebert, Zuffi, & Amori, 2015).

Co-occurrence analyses also indicated that predator—prey inter-
actions do not impose major restrictions on island coexistence, at 
least on medium to large islands. These analyses revealed examples 
where predators and prey positively co-occurred throughout the 
entire island network (e.g., Podarcis milensis—Macrovipera schweizeri; 
Adamopoulou, Valakos, & Legakis, 1997). Some of the prey species 
have developed mechanisms for predation avoidance (e.g., tail au-
totomy) that reduce the demographic impact of predators (Pafilis, 
Foufopoulos, Poulakakis, Lymberakis, & Valakos, 2009). Snakes and 
their prey also coexist on some satellite islets, but the snake popula-
tions are fragile and prone to extinction if the availability of prey de-
creases (e.g., associated with campaigns to control rat populations; 
Slavenko, Tallowin, Itescu, Raia, & Meiri, 2016; Vanni & Nistri, 2006).

The analysis revealed only significant negative associations be-
tween some species of the Podarcis genus. These species commonly 
occupy very small islets (Brown & Pérez-Mellado, 1994; Raia et al., 
2010), where the extremely simplified habitats do not support the 
coexistence of ecologically homologues species. Some of these con-
generic lizards can coexist on large islands, but they segregate para-
patrically among macrohabitats (Delaugerre & Cheylan, 1992; Tóth 
et al., 2006); when they co-occur on smaller islands the result is rapid 
extinction of one of the species (Nikolic et al., 2019).

This study has provided new insights into the organization of 
Squamata assemblages on Mediterranean islands. These islands in-
clude numerous endemic species, particularly of small lacertidae of 
the genus Podarcis (Itescu et al., 2018). The negative association pat-
terns found in the co-occurrence analysis suggest that the introduc-
tion of alien congeneric species could have a very negative effect 
on microinsular endemic lizards. Accidental translocation of several 
species of Podarcis has been documented in the Mediterranean 
(Silva-Rocha et al., 2014; Spilani et al., 2018). The results of this 
study indicate that in the event of the introduction of alien lizards to 
small islets, their rapid control and eradication is advisable.

5  | CONCLUSION

Phylogenetic relationships have an important effect on the organi-
zation of biotic communities. The Squamata assemblages in small 
islands are phylogenetically evenly dispersed. Pairs of congeneric 

TA B L E  3   Association between phylogenetic distance and the 
co-occurrence metric Cij, evaluated by quantile regression

Subregion  Q25 Q50 Q75

Balearic Slope 0.0001 0.0002 −0.0006

p 0.88 0.97 0.001

Central Adriatic Slope 0.0006 0.0001 −0.0003

p 0.999 0.787 0.074

Central Aegean Slope 0.00 0.00007 0.0001

p 0.605 0.871 0.907

Corsica-Sardinia Slope −0.0001 0.0004 0.0003

p 0.294 1.00 0.997

Crete Slope 0.00 −0.0002 −0.0005

p 0.380 0.164 0.066

Gulf of Gabès Slope 0.00006 −0.0002 0.0005

p 0.751 0.255 0.954

Ionian Sea Slope −0.0002 −0.0001 0.00

p 0.198 0.162 0.512

Ligurian 
Sea-Provence

Slope 0.000001 0.0001 0.00004

p 0.483 0.721 0.665

Malta Slope 0.001 0.001 −0.001

p 0.781 0.968 0.001

Northern 
Adriatic

Slope −0.0002 −0.0002 −0.0004

p 0.168 0.132 0.015

Northeastern 
Aegean

Slope −0.0005 −0.0008 −0.0007

p 0.007 0.001 0.001

Southeastern 
Aegean

Slope 0.0004 0.0001 0.00

p 0.997 0.763 0.495

Sicily Slope 0.0001 0.00 −0.002

p 0.889 0.468 0.001

South mainland 
Greece

Slope −0.0001 −0.0003 0.00

p 0.184 0.018 0.469

Tyrrhenian 
Sea (Italian 
Peninsula)

Slope 0.00004 −0.002 −0.001

p 0.683 0.001 0.001

Note: The slope values and their statistical significance are shown for 
each of the measured quantiles (Q) of the distribution of Cij.
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F I G U R E  3   Co-occurrence matrices, based on the Schoener's Index, generated for each subregion with more than eight islands. The red 
star indicated the statistically significant positive associations and the blue star the statistically significant negative associations (α = 0.01) 
according to a probabilistic analysis
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species are associated negatively in small island systems; therefore, 
accidental translocations of mainland related species can have a 
pernicious effect on island endemisms. The results of this study, in 
addition to disentangling the relationships between assemblage or-
ganization and phylogenetic diversity, have practical value for con-
servation management of island reptile faunas.
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