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The benefits obtained from mating are usually condition-dependent, favouring the evolution of flexible investment
during copulation; for example, in terms of invested time, energy or sperm. Flexible investment strategies are
predicted to depend on the likelihood of acquiring alternative mates and therefore they should depend on the
timing of mate encounter. However, scarce experimental evidence for this hypothesis exists. In the present study,
we manipulated the time delay until first mating and the interval between first and second mating in the
polygynandrous common lizard Zootoca vivipara. We determined treatment effects on fertilization success and
copulation duration, with the latter being a proxy for investment in mating and for the quantity of transferred
sperm. The duration of the second copulation decreased with increasing inter-mating interval and depended on
the fertilization success of first mates. The former provides evidence for time-dependent investment strategies,
most likely resulting from the progression of the female’s reproductive cycle. The fertilization success of first
mates increased with increasing inter-mating interval and was higher when females were closer to ovulation,
showing that flexible investment strategies significantly affected male reproductive success. This indicates
fertilization assurance, which may mitigate the negative effects of low population density on reproductive success
(e.g. Allee effects). © 2016 The Linnean Society of London, Biological Journal of the Linnean Society, 2016, 118,
610–617.
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INTRODUCTION

The benefits of mate choice often depend on an
organism’s extrinsic and intrinsic conditions, includ-
ing its physiological state and physical and social
environment. The latter includes the likelihood of
encountering mates, which is a function of popula-
tion density and operational sex ratio (Shuster &
Wade, 2003; Kokko, Klug & Jennions, 2012). For
example, strong mate choice may be beneficial in
dense populations but could lead to no reproduction
in low-density populations or during habitat colo-
nization because preferred mates may not be encoun-

tered (Courchamp, Clutton-Brock & Grenfell, 1999).
Under such conditions, weaker mate choice may
guarantee reproduction (Kokko & Rankin, 2006;
Bleu, Bessa-Gomes & Laloi, 2012), potentially
favouring the evolution of flexible strategies (McNa-
mara & Houston, 1996; Jennions & Petrie, 1997;
Roff, 2002).

Similarly, strategic resource investment during
mating might be beneficial (Sheldon, 2000; Bonduri-
ansky, 2001). For example, under sequential mate
encounter, males may invest different amounts of
sperm depending on the mating order (e.g. first/sec-
ond to mate) and female mating status (e.g. virgin/
previously mated) because these determine the risk of
sperm competition (Parker & Pizzari, 2010; Ramm &*Corresponding author. E-mail: merelbreedveld@mncn.csic.es
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Stockley, 2014). Males should invest more sperm
when increased sperm competition risk exists (Par-
ker et al., 1997). However, if fertilization becomes
less likely with the time passed subsequent to a
female’s first copulation (Huck, Quinn & Lisk, 1985;
Schwagmeyer & Foltz, 1990), investment may
decline. Strategic resource investment may exist not
only in males (i.e. through adjustment of sperm
quantity; Parker & Pizzari, 2010), but also in
females, such as by controlling the quantity of sperm
received or retained (i.e. cryptic female choice;
Andr�es & Cordero Rivera, 2000; Engqvist & Sauer,
2003; Pilastro et al., 2007).

Studies indeed show that population density affects
mating strategies (Palokangas, Alatalo & Korpim€aki,
1992; Cornwallis & Birkhead, 2006; Mugabo et al.,
2013). Similarly, mating strategies may depend on
the temporal pattern of mate encounter, as suggested
by mathematical models (Crowley et al., 1991;
Gowaty & Hubbell, 2005), and the time interval
between sequential mates may affect the benefits
obtained through additional mating (Parker, 1990;
Real, 1990; Jennions & Petrie, 1997). Therefore, flexi-
ble mate preferences and resource investment with
respect to mating intervals may have evolved. How-
ever, to our knowledge, besides a few experiments in
insects (Simmons, 1995; Reinhold & von Helversen,
1997; Lehmann & Lehmann, 2000), experimental
studies manipulating time intervals between succes-
sive matings to investigate effects on resource invest-
ment during mating are lacking. Thus, the
importance of mating intervals for the evolution of
flexible mating strategies is elusive. This is surpris-
ing given that sequential mate encounter is common
in natural populations and processes such as climate
change and habitat fragmentation can affect the tim-
ing of mate encounter (Møller, 2004; Lane, Forrest &
Willis, 2011; Morbey, Coppack & Pulido, 2012), poten-
tially reducing fitness and population viability (e.g.
through mating failure and Allee effects; Calabrese &
Fagan, 2004; Saino et al., 2011; Larsen et al., 2013).

In the present study, we experimentally test, using
the polygynandrous common lizard (Zootoca vivi-
para), whether the time interval between matings
affects mating strategies and reproductive success.
Previous results have demonstrated a decreasing
female re-mating probability with increasing mate
encounter intervals and reduced female choosiness
and/or mate resistance with delayed first mate
encounter (Breedveld & Fitze, 2015), pointing to flex-
ible pre-copulatory strategies that can assure repro-
duction when mates are scarce (i.e. encountered
late). In the present study, we determine whether
flexible male or female investment strategies exist
once copulation is initiated.

We manipulated the length of the interval between
two successive copulations in females (re-mating
delay). If the interval drives reproductive investment
strategies, we predicted that re-mating delay would
have an effect on the duration of second copulations
and on fertilization success, and also that strategies
may depend on first male fertilization success. Copu-
lation duration is a proxy for sperm quantity
invested because Z. vivipara exhibits non-instanta-
neous ejaculation (i.e. continuous sperm transfer)
(Olsson et al., 2004). To clarify whether investment
strategies depend on the risk of sperm competition
and/or intrinsic conditions (i.e. female reproductive
stage), we also manipulated the delay between
female emergence from hibernation and the day of
first mating (mating delay). Under male strategies
driven by sperm competition risk, we predicted no
effects on copulation duration of first mates because
these mated with virgins. However, we predicted dif-
ferences in copulation duration between first and
second mates because only second mates may have
knowledge about potential rivals. Under strategies
driven by female reproductive stage, we predicted an
increased copulation duration with a longer mating
delay because, in spontaneous ovulating species
(Bleu et al., 2011), later mating females are further
advanced in their reproductive cycle (i.e. under
stronger time constraints to assure fertilization).

MATERIAL AND METHODS

SPECIES DESCRIPTION

The common lizard (Zootoca vivipara Lichtenstein,
1823) is a small, widely distributed Lacertidae (Sur-
get-Groba et al., 2002). Males emerge from hiberna-
tion in spring (February to March) and females
emerge several weeks later, initiating the mating
season (Roig, Carretero & Llorente, 2000). Females
mate with multiple males (N = 1–5) (Laloi et al.,
2004) and males with multiple females (N = 1–14)
(Fitze et al., 2005). Copulations last from several
minutes to several hours (mean � SE:
32.5 � 3.8 min) (Gonzalez-Jimena & Fitze, 2012),
during which sperm is transferred continuously (Ols-
son & Madsen, 1998). Mating is costly for females
because the male’s mouth-grip produces scars and
mating can lead to mortality (Fitze & Le Galliard,
2008). Females exert pre-copulatory mate choice by
accepting or fending off males (Fitze, Cote & Clobert,
2010), as well as exhibit time-dependent choice
strategies (Breedveld & Fitze, 2015) and trade-up
strategies (Fitze et al., 2010; Laloi et al., 2011).
Males exhibit ‘best-of-bad-job’ strategies (Gonzalez-
Jimena & Fitze, 2012).
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Females cannot store sperm over winter, and thus
need to acquire sperm after emergence. Ovulation
(i.e. fertilization) occurs approximately 1 month after
emergence (Gavaud, 1983), which is typically 3–
4 weeks after mating (Bauwens & Verheyen, 1985).
Although sperm storage structures (Sever & Ham-
lett, 2002) have not been reported, the copulation–
fertilization interval suggests prolonged sperm sur-
vival in the female’s reproductive tract and a possi-
ble overlap of ejaculates provided on different days
(i.e. potential sperm competition) (Olsson & Madsen,
1998). Moreover, within clutches, eggs are usually
fertilized by several males (Fitze et al., 2005), indi-
cating that sperm competition indeed exists (Girling,
2002). No evidence exists for cryptic choice or other
fertilization-biasing mechanisms (e.g. mate guarding,
copulatory plugs; Parker, 1998).

PRE-EXPERIMENTAL CONDITIONS

Lizards were hand-captured from populations in
Roncesvalles (Spain) and individually marked (toe-
clipped). Before hibernation (September 2010), they
were released in 100-m2 semi-natural enclosures, at
research station ‘El Boalar’ (42°330N, 0°370W, 700 m
a.s.l.) of the Instituto Pirenaico de Ecolog�ıa (San-Jose
et al., 2014). Males and females occupied different
enclosures to prevent pre-experimental mating. Upon
male emergence from hibernation (March 2011),
female enclosures were searched daily (09.00 h to
05.00 h). Females were captured upon detection and
males shortly before experimentation.

Lizards were measured for body mass (mg) and
body size [snout–vent length (SVL) in mm]. Males
and females were housed on separate shelves in indi-
vidual terrariums (25 9 15 9 15 cm) under stan-
dardized conditions (Fitze et al., 2010) and within-
sex positions were randomized (SVL, body mass,
body condition: residuals from a regression of body
mass on SVL; all P > 0.5). Further details are pro-
vided elsewhere (Breedveld & Fitze, 2015).

MATING EXPERIMENTS

Females (N = 26) could mate with two randomly
selected males (N = 80); ‘first mates’ were presented
2 or 9 days after female emergence from hibernation
(mating delay), and ‘second mates’ 2, 6 or 10 days
after first mates (re-mating delay; Breedveld & Fitze,
2015). During mating trials (March to April 2011;
09.00 h to 06.00 h), each female was released into a
standardized box (Fitze et al., 2010) and a male was
introduced. Lizards were observed every 5 min to
determine copulations and video-recorded for verifi-
cation. If no mating occurred within 1 h, males were
replaced, respecting the natural mating attempt rate

(mean � SE: 1.1 � 0.9 h�1; Heulin, 1988). If mating
occurred, both individuals were removed after 1 h or,
if mating continued, 5 min post-copulation. Trials
ended when a female copulated with one male. After
a trial, males were released in their original enclo-
sure. Males were never presented to the same female
and ≥ 2 days passed between presentations.
Repeated mating by males occurred few times (in dif-
ferent treatments) and, excluding the repeats from
the analyses, led to the same qualitative results.
Twenty-three females copulated once and 20 females
re-mated. Females were returned to the enclosures
20 days after capture, and thereafter recaptured
weekly to determine egg presence and developmental
status (abdominal palpation). Predation reduced
sample size to 12 gravid females. Females near
oviposition were captured and maintained in the lab-
oratory under standardized conditions. Upon oviposi-
tion, clutch size was determined and clutches were
incubated (San-Jose et al., 2014).

No significant differences existed between copulat-
ing first and second mates in SVL, body condition,
days between capture and copulation, and presenta-
tion history [whether they were previously presented
to another female or had previously mated; analysis
of variance (ANOVA), all P ≥ 0.1]. There were no dif-
ferences in emergence date, SVL or body condition
between females from different (re-)mating delays,
and no significant interactions existed (ANOVA, all
P ≥ 0.1).

PATERNITY ASSIGNMENT

Tissue samples (tail tips) from mothers, putative
fathers, juveniles, and undeveloped embryos, were
frozen in 70% ethanol. DNA was extracted using
BioSprint 96 DNA Blood Kit (Qiagen). Paternity was
established using 4-6 polymorphic microsatellite
DNA loci (Lv-3-19, Lv-4-72, Lv-4-alpha, Lv-2-145,
Lv-4-X, Lv-4-115; Boudjemadi et al., 1999). Fathers
were manually attributed and verified using CER-
VUS, version 3.0 (Marshall et al., 1998). Detailed
methods of the polymerase chain reaction and allele
size determination have been described previously
(Laloi et al., 2004).

STATISTICAL ANALYSIS

Treatment effects on copulation duration and fertil-
ization success were analyzed, using all females that
mated, re-mated, and laid fertilized eggs (N = 12).
Analyses were performed using R, version 3.0.0 (R
Core Team, 2013).

To determine whether treatment affected the num-
ber of males presented to females until mating
occurred, a generalized linear model (GLM) with
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Poisson error and log link was run, including mating
delay as a factor. To determine effects on the number
of males presented until re-mating, a GLM with
Poisson error and log link was run, including mating
delay as a factor, re-mating delay as a covariate, and
their interaction.

Copulation duration was measured with 5-min pre-
cision and square-root transformed. Copulation dura-
tion of the first copulation was analyzed using a
linear model, including mating delay as a factor.
Copulation duration of the second copulation was
analyzed using a linear model with mating delay and
whether or not the first mate fertilized at least one
egg (i.e. first male success) as factors, re-mating
delay as a covariate, and all two-way interactions.
Whether or not a male had previously mated was
included as a factor in the previous two models. To
determine whether the copulation duration of the
second copulation affected a first mate’s probability
of fertilizing eggs, a GLM with copulation duration
of the second copulation as a covariate was run. To
test for differences in copulation duration between
first and second copulations, a generalized linear
mixed model (GLMM) was run, with copulation order
as a factor and female as a random effect. To test
whether these differences depend on mating delay,
the same model was run including the factor mating
delay and its interaction with copulation order.

The number of eggs females laid was analyzed
using a GLM with quasi-Poisson error (accounting
for overdispersion), including mating delay as a fac-
tor, re-mating delay as a covariate, and their interac-
tion. The proportion of fertilized eggs was analyzed
using a GLM with quasi-Binomial error, including
mating delay as a factor, re-mating delay as a covari-
ate, and their interaction.

Fertilization success of either mate (i.e. number of
eggs fertilized) was analyzed using a GLMM with
Poisson error and log link, including mating delay
and copulation order as factors, re-mating delay as a
covariate, female as a random effect, and all two-way
interactions.

Model selection was performed using likelihood
ratio tests, and assumptions were tested and ful-
filled. Post-hoc tests were performed using individual
contrasts and P values were Bonferroni adjusted.

RESULTS

Treatments did not significantly affect the number of
males presented to females until mating
(mean � SE: 2.1 � 0.4 males; N = 12; mating delay:
v2 = 0.408, d.f. = 1, P = 0.523) and re-mating
occurred (2.3 � 0.4 males; N = 12; mating delay:
v2 = 0.415, d.f. = 1, P = 0.520; re-mating delay:

v2 = 0.051, d.f. = 1, P = 0.821; interaction:
v2 = 0.794, d.f. = 1, P = 0.373).

COPULATION DURATION

Copulations lasted 5–85 min (36.7 � 3.3 min;
N = 24). First copulations were significantly longer
when the mating delay was 9 days (43.6 � 7.6 min)
compared to when it was 2 days (21.0 � 4.8 min;
v2 = 5.926, d.f. = 1, P = 0.015). Whether or not a
male previously mated was not significant
(v2 = 0.262, d.f. = 1, P = 0.609).

Second copulations were significantly shorter when
the mating delay (with first mates) was 9 days
(36.4 � 4.3 min) compared to when it was 2 days
(43.0 � 5.6 min; v2 = 7.337, d.f. = 1, P = 0.007) and
the interaction between re-mating delay and first
male success was significant (v2 = 4.182, d.f. = 1,
P = 0.041) (Fig. 1A). When first mates fertilized eggs,
the copulation duration of the second copulation was
more strongly decreased with an increasing re-mating
delay compared to when first mates fertilized no eggs.
There was no significant effect of whether a male pre-
viously mated (v2 = 1.011, d.f. = 1, P = 0.315) and no
other significant interaction (all P ≥ 0.2). A first
mate’s success did not depend on the duration of sec-
ond copulations (v2 = 0.045, d.f. = 1, P = 0.833).

Between the first and second copulations, no over-
all difference in copulation duration existed
(v2 = 1.116, d.f. = 1, P = 0.291). There was, however,
a significant interaction between copulation order
and mating delay (v2 = 7.036, d.f. = 1, P = 0.008)
(Fig. 1B). Second copulations lasted significantly
longer than first copulations when the mating delay
was 2 days (Z = �3.017, P = 0.005) but not when it
was 9 days (Z = 0.860, P = 0.780).

FERTILIZATION SUCCESS

Mean clutch size was 3.9 � 0.4 (N = 12) and the pro-
portion of fertilized eggs was 0.7 � 0.1. There were
no significant treatment effects on the number of
eggs laid or the proportion fertilized. Interactions
were not significant (all P ≥ 0.2). Of all copulating
males, 42% fertilized zero eggs. Fertilizing mates
sired one to six eggs per clutch (2.4 � 0.4).

The number of eggs fertilized by either mate was
significantly affected by an interaction between copu-
lation order and mating delay (v2 = 4.405, d.f. = 1,
P = 0.036) (Fig. 2A); first mates fertilized signifi-
cantly more eggs than second mates when the mat-
ing delay was 9 days (Z = 2.672, P = 0.008) but not
when it was 2 days (Z = 0.081, P = 0.935). A signifi-
cant interaction between copulation order and re-
mating delay existed (v2 = 6.988, d.f. = 1, P = 0.008)
(Fig. 2B). The number of eggs fertilized significantly
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increased with re-mating delay in first mates
(v2 = 4.360, d.f. = 1, P = 0.037, estimate = 0.153
� 0.074) and tended to decrease with re-mating
delay in second mates (v2 = 3.117, d.f. = 1, P = 0.077,
estimate = �0.187 � 0.120). No other significant
interactions existed (all P ≥ 0.4).

DISCUSSION

Flexible mating strategies with respect to the timing
of mate encounter may allow optimization of repro-
ductive investment when mates are scarce. In the
present study, we manipulated the timing of mate
encounter and analyzed the effects on copulation
duration and fertilization success in Z. vivipara. The
results obtained reveal investment strategies in
response to the length of the interval between copu-
lations and first male success. Copulation duration
with second mates decreased faster with increasing
re-mating delay when first mates fathered eggs
(Fig. 1A) and first male success was independent of
copulation duration with second mates. Copulation
duration decreased more slowly with re-mating delay
when first mates did not fertilize any eggs, suggest-
ing that adjustment of copulation duration with sec-
ond mates did not occur with respect to whether a
female had previously mated or not. By contrast, it
depended on whether or not eggs were fertilized by
sperm from a previous mate (i.e. dependent on sperm
representation; Garc�ıa-Gonz�alez, 2004). Nonsperm

representation is the result of male sterility, insemi-
nation failures or failures to fertilize the ova. The
latter cannot explain the mating strategies detected
in the present study because, in Z. vivipara, fertiliza-
tion occurs several weeks after copulation (Bauwens
& Verheyen, 1985). By contrast, temporal sterility is
common in male Z. vivipara and previous observa-
tions showed that male Z. vivipara copulated regard-
less of whether or not they carried sperm (M. C.
Breedveld, pers. observ.). The finding that copulation
duration with second mates depended on first male
success is thus congruent with bet-hedging strategies
of females against sterility or genetic defects (Thorn-
hill & Alcock, 1983; Wolff & Macdonald, 2004).

First copulations occurring 9 days after female
emergence lasted longer than first copulations 2 days
post-emergence, and the copulation duration with
virgin and mated females (i.e. first and second copu-
lations) did not differ. These findings are in contrast
to predictions under strategic male investment in
response to sperm competition risk but are in line
with strategic investment with respect to female
reproductive stage. Virgin females emerging 9 days
before copulation are closer to ovulation (i.e. under
stronger pressure to assure fertilization) than those
emerging 2 days before, potentially explaining the
longer copulations. Similarly, shorter copulations
after longer re-mating delays by females that already
obtained sperm from first mates may be the result of
females reducing reproductive investment (e.g. to
conserve energy/avoid unnecessary mating costs)
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when smaller fitness returns of re-mating are pre-
dicted, in line with a declining willingness to re-mate
and trade-up strategies (Fitze et al., 2010; Bleu
et al., 2012). The fact that clutch size and fertiliza-
tion success were unaffected by mating and re-mat-
ing delay indicates that females were not sperm
limited and that different strategies had no negative
effects on female reproduction. This suggests that
the observed investment strategies allow females to
maintain reproductive success under low mate avail-
ability by relying on first mates for fertilization,
especially when these are encountered late.

Re-mating delay positively and significantly
affected the number of eggs first mates fertilized,
whereas it negatively affected the number fertilized
by second mates (marginally significant). This shows
that mating intervals importantly determine male fer-
tilization success, in accordance with previous studies
of time-dependent sperm competition patterns (Sch-
wagmeyer & Foltz, 1990). The fact that mating delay
also influenced fertilization may result from the inter-
val between insemination and ovulation (Olsson &
Madsen, 1998). Females with first copulations occur-
ring longer after emergence may have been at a more
advanced reproductive stage (Gavaud, 1991), poten-
tially leading to a higher fertilization probability.
However, although, at a mating delay of 9 days, first
mates fertilized more eggs than second mates
(Fig. 2A), the length of first and second copulations
did not differ (Fig. 1B). Moreover, fertilization success

did not differ when the mating delay was 2 days,
although copulation with first mates was shorter.
This is in contrast to other lizard species, where copu-
lation duration is a good predictor of fertilization suc-
cess (Olsson et al., 2004), at least when two males
copulate with the same female on different days. This
again suggests that the observed investment strate-
gies with respect to mate encounter time are likely
female (and not male) driven. However, additional
experiments are needed to confirm this hypothesis.

Overall, we provide evidence suggesting that the
timing of successive matings can importantly deter-
mine investment strategies. Additional experiments
should investigate similar strategies in other species,
and studies manipulating time of mate encounter in
males would refine knowledge about male roles in
investment strategies. The detected strategies could
mitigate the potential negative effects of mate scar-
city, strong choosiness, and male sterility on female
reproductive success (e.g. through adjusting choosi-
ness and/or investment) and population dynamics, in
line with investment strategies that optimize repro-
ductive success, potentially explaining rapid post-gla-
cial population expansions in Z. vivipara (Surget-
Groba et al., 2002). Because sequential mating is
common in most species, investment strategies with
respect to inter-mating intervals might be wide-
spread. Understanding how animals deal with
temporal variation in mate encounter is important
for predicting how individuals, and ultimately
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populations, will respond to changes in population
demography. If individual investment strategies are
flexible, the effects of variation in mate encounter
timing on population dynamics might be small (as
suggested by the present study), whereas inflexible
responses can negatively impact fitness and popula-
tion viability (Calabrese & Fagan, 2004; Saino et al.,
2011).
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