PROCEEDINGS THE ROYAL BIOLOGICAL SOCIETY

Island tameness: living on islands reduces flight initiation distance

William E. Cooper, Jr, R. Alexander Pyron and Theodore Garland, Jr

Proc. R. Soc. B 2014 281, 20133019, published 8 January 2014

Supplementary data	"Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2014/01/02/rspb.2013.3019.DC1.h tml
References	This article cites 39 articles, 10 of which can be accessed free http://rspb.royalsocietypublishing.org/content/281/1777/20133019.full.html#ref-list-1
Email alerting service	Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

rspb.royalsocietypublishing.org

Research

Cite this article: Cooper Jr WE, Pyron RA, Garland Jr T. 2014 Island tameness: living on islands reduces flight initiation distance. *Proc. R. Soc. B* **281**: 20133019. http://dx.doi.org/10.1098/rspb.2013.3019

Received: 18 November 2013 Accepted: 4 December 2013

Subject Areas:

behaviour, ecology, evolution

Keywords:

antipredatory behaviour, body size, escape behaviour, flight initiation distance, island tameness, lizard

Author for correspondence:

William E. Cooper Jr e-mail: cooperw@ipfw.edu

Electronic supplementary material is available at http://dx.doi.org/10.1098/rspb.2013.3019 or via http://rspb.royalsocietypublishing.org.

Island tameness: living on islands reduces flight initiation distance

William E. Cooper Jr¹, R. Alexander Pyron² and Theodore Garland Jr³

¹Department of Biology, Indiana University Purdue University Fort Wayne, Fort Wayne, IN 46835, USA ²Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA ³Department of Biology, University of California, Riverside, CA 92521, USA

One of Darwin's most widely known conjectures is that prey are tame on remote islands, where mammalian predators are absent. Many species appear to permit close approach on such islands, but no comparative studies have demonstrated reduced wariness quantified as flight initiation distance (FID; i.e. predator-prey distance when the prey begins to flee) in comparison with mainland relatives. We used the phylogenetic comparative method to assess influence of distance from the mainland and island area on FID of 66 lizard species. Because body size and predator approach speed affect predation risk, we included these as independent variables. Multiple regression showed that FID decreases as distance from mainland increases and is shorter in island than mainland populations. Although FID increased as area increased in some models, collinearity made it difficult to separate effects of area from distance and island occupancy. FID increases as SVL increases and approach speed increases; these effects are statistically independent of effects of distance to mainland and island occupancy. Ordinary least-squares models fit the data better than phylogenetic regressions, indicating little or no phylogenetic signal in residual FID after accounting for the independent variables. Our results demonstrate that island tameness is a real phenomenon in lizards.

1. Introduction

Darwin [1] observed that animals on remote oceanic islands often are unafraid of people, permitting close approach. He believed that escape behaviour had diminished where predators were rare or absent on remote islands, which resulted in loss of costly escape responses [2–6] in the absence of strong natural selection to maintain them. Island tameness has been reported anecdotally in birds, lizards and other taxa [6–9]. If Darwin's island tameness hypothesis is correct, predation intensity and escape responses should be diminished on islands compared with the mainland and should also vary with distance from the mainland [10,11]. Mammalian predators are often absent from remote islands [1,7], but are able to visit or colonize islands nearer the mainland. Therefore, predation intensity should decrease as distance to the mainland increases (i.e. isolated islands should have lower predation intensity).

Recent evidence indicates that on islands where predation is reduced or absent, flocking of birds and group-size effects on vigilance in macropod marsupials are reduced [10,12]. In several cases, it has been shown for one or a few species that flight initiation distance (FID; i.e. predator–prey distance when the prey starts to flee) is shorter on islands having fewer predators (e.g. [6,13,14]). Despite such studies and the existence of many reports that some island species appear to be tame, the reality of island tameness as a general phenomenon has not previously been examined empirically in any diverse group of prey species, such as lizards, that are distributed widely on both continents and islands. Phylogenetic relationships that might affect estimates of correlations between escape behaviour and island occupancy have not been taken into account except in a single study of kangaroos and wallabies, for which no relationship was discovered between FID and island occupancy [12].

Escape behaviour is costly owing to loss of foraging, social and other opportunities, as well as to energetic expenditure [15,16]. To reduce escape costs when

predation is relaxed or absent, shortened FID is expected to evolve over time. Several recent lizard studies have shown that FID is diminished in populations on islands where predation is relaxed [2,6,13] or is increased on islands where prey are exposed to feral cats and dogs [6,17]. In the lizard *Podarcis pityusensis*, which exists only on Ibiza, Formentera and nearby islets, FID increases as predation intensity on the islets increases [14]. On the other hand, Blumstein & Daniel [12] suggested that island tameness could be a consequence of aspects of living on islands other than predation.

Most species claimed to exhibit island tameness occur only on remote islands, but quantitative comparisons of escape behaviour between putatively tame animals and related mainland species are needed to eliminate the possibilities that (i) escape behaviour is not reduced on islands generally (barring anecdotal exceptions) or (ii) that it is reduced, but that lineages having short FID on islands also have short FID on the mainland. The latter might occur if species with minimal escape responses are more likely to become established and survive on remote islands. To test for island tameness in lizards, we conducted a phylogenetically informed analysis of variation in FID among 66 island and mainland lizard species from five continents and islands in the Atlantic and Pacific Oceans and the Caribbean and Mediterranean Seas.

Optimal escape theory [16,18] predicts that FID should increase as predation risk increases. Relative sizes of prey and predator affect risk, and FID should increase as predator size increases [19,20]. In the lizard Sceloporus jarrovii, FID when approached by a person is longer in larger individuals, presumably because larger lizards are more likely to be detected and attacked by (or less able to escape from) a large predator [21]. We predicted that FID increases as body size (snout-vent length; SVL) increases, as it does in birds [22] and macropod marsupials [9]. Because occupation of islands affects body size of lizards [23], we used multiple regression to examine the independent statistical influences of distance from the nearest mainland and body size on FID. Because FID increases as predator approach speed increases [24,25], it was included in the multiple regression models. Because predation pressure may be predicted to decrease with distance from the mainland and increase with island area (the latter effect owing to the increase in species diversity with island area [11]), we examined effects of these variables, as well as that of island versus mainland occupancy, on FID.

2. Material and methods

(a) Dataset and phylogeny

We used published data on FID (m), SVL (mm), island occupancy, distance to mainland (km) and land area (km²) for 66 lizard species, and included approach speed for all but three species (see electronic supplementary material, table S1). The species include two that currently have subspecific status, but are reproductively isolated. We included FID data only if based on continuous approaches towards researchers walking at fixed speeds of $0.4-1.2 \text{ m s}^{-1}$. We required that lizards be less than 1 m from the ground or be approached by a researcher walking at the height of the perch. We excluded data for populations habituated to human presence, in which individuals were approached more than once, and in which researchers pointed at lizards with arms or inanimate objects. Where sex differences

in FID were reported, we calculated a grand mean FID using the data for both sexes and for populations or multiple studies, taking sample sizes into account by using weighted means. SVL values were the maximum for each species in field guides and original papers cited (see electronic supplementary material, table S1). Distances to mainland were taken from cited papers (see electronic supplementary material, table S1) or estimated from distances on maps viewed on the Internet, primarily Google maps. Approach speeds were obtained from the cited sources or, in a few cases, from the authors. Island areas were obtained from Wikipedia, other websites and atlases. In many birds, mammals and lizards, FID increases as starting distance (predator-prey distance when the predator begins to approach) increases, but this effect is absent or reduced in lizards at the slow approach speeds used [5,26,27]. Owing to our stringent requirements for inclusion to ensure comparability, data from some excellent studies of escape behaviour (e.g. [28,29]) were excluded.

There are 66 taxa for which data were available that were included in a recent phylogeny of Squamata [30], which was time-calibrated for phylogenetic comparative analysis in a recent study using several well-constrained node ages based on the fossil record [31]. The original tree contained 4161 species and was trimmed to the 66 in our dataset. FIDs were available for two subspecies of *Scelarcis (Lacerta) perspicillata: S. p. chabaudi* and *pellegrina.* To include both of these in the phylogeny, we simply broke the branch leading to the terminal *S. perspicillata* in half, and assigned that distance to each subspecies, grafted onto the final tree. The other branches were not modified. The pruned phylogeny is provided in the electronic supplementary material (appendix S1).

(b) Statistical analyses

We conducted multiple regressions of FID on SVL, approach speed, distance to the nearest mainland and land area (or a categorical variable indicating occupation of island versus mainland; see the electronic supplementary material) to assess possible independent effects of these variables. FID, SVL, distance to mainland and island area were logarithmically transformed to eliminate heterogeneity of variance between island and mainland taxa, and to linearize relationships. Prior to log₁₀ transformation, 0.5 was added to distance to mainland to accommodate zero values. We conducted ordinary least-squares (OLS) analysis, the conventional analysis in which each species is assumed to provide an independent datum. OLS does not use phylogenetic information; it implies that all taxa originated simultaneously [32].

Other analyses were conducted using two phylogenetic scenarios with time-calibrated molecular branch lengths from our phylogeny. We conducted phylogenetic least-squares analyses (PGLS) and RegOU analyses, the latter using the Ornstein–Uhlenbeck transformation [33], which implies an elastically restrained random walk used to model stabilizing selection about an optimum value taken to be the mean for all taxa. Calculations were done in MATLAB using the Regressionv2.m program [33]. Alpha was 0.05. Akaike's information criterion corrected for sample size (AIC_c) was used initially to assess explanatory merits of the models [34].

For each of the three types of analysis (OLS, PGLS and RegOU), we performed regressions for 12 models, including various combinations of the island variables plus SVL and approach speed. Our initial analyses indicated that the OLS models always fit the data better than PGLS or RegOU models. We used adjusted r^2 and AICc to help choose among OLS models. In addition to the above tests, we conducted OLS regressions limited to island taxa, which greatly reduced multicollinearity of some of the independent variables. Although the phylogenetic models were poor for FID, we examined the possibility that phylogeny might affect SVL by conducting a maximum-likelihood test for the

Figure 1. Three-dimensional scatter plot of FID on SVL and distance to mainland for all data. FID (m) decreases as the distance of the population from the mainland (km) increases, and increases as SVL (mm) increases. Note that mainland species are represented by a large cluster at log(distance + 0.5) having variable body length and FID.

phylogenetic tree fitted to log(SVL) and a randomization test for log(SVL) [35].

3. Results

Island tameness was apparent in the OLS analyses of the entire dataset and those restricted to island taxa. All RegOU models indicated that a star model is superior to the hierarchical phylogenetic tree that we used. These results indicate that ecological factors affect FID, but that the effects do not vary across species or clades in a predictable way based on their evolutionary relationships. The AICc values of all PGLS models were very large (greater than 50) compared with those for OLS models (range 6-23). Therefore, we chose among OLS models. The superiority of OLS models for predicting log(FID) does not imply that the independent variables lack phylogenetic signal. The maximum likelihood for the phylogenetic tree fitted to log(SVL) was 30.14, far higher than that for a star phylogeny (3.71). The randomization test revealed a significant phylogenetic signal (p < 0.0005) and the K statistic (K = 0.787) indicates a fairly strong phylogenetic signal compared with those found for body size and other traits in various organisms.

For all data, including mainland and island species (figure 1), the five best OLS models included at least one of the three island-related variables plus SVL and approach speed; all five had adjusted r^2 values of 0.40–0.43 and had the lowest AIC_c values (5.56–8.39; table 1). In the model having the lowest AIC_c (second model in table 1), FID decreased significantly as distance to mainland increased (figure 2*a*). In the model having the second lowest AIC_{c} (third model in table 1), FID increased significantly as land area increased. In the top model in table 1, distance to mainland and area were not significantly related to FID, but these variables were so tightly correlated (r = 0.96) that the assumption of independence between variables was seriously violated. In the fourth model, collinearity between island occupancy and area (r = 0.96) also occurred; neither variable was significantly related to FID. In the fifth model, which did not include distance to mainland or area as factors, FID was significantly shorter for island than mainland species. These findings for the three island variables show that island species have shorter FID than mainland taxa, demonstrating the existence of island tameness, but strong correlations among the island-related variables preclude conclusions regarding independent effects of the variables. However, distance to mainland had slightly greater explanatory power than the other two variables. For the entire dataset, FID increased significantly as SVL increased (figure 2*b*) and as predator approach speed increased in all OLS models in which they were included (table 1).

In the analyses restricted to island taxa (figure 3), two OLS models were clearly superior to the others, accounting for 65 and 63% of the variance of FID (table 1). None of the other models that we examined had adjusted $r^2 > 0.38$. In both models, FID increased significantly as both SVL and approach speed increased (table 1). Also in both models, FID decreased significantly as distance to mainland increased. One model did and the other did not include island area as a factor. In the model including both distance to mainland and area, the effect of island area was not significant. The best model (based on its having the lowest AIC_c) included distance to mainland as a factor, but not island area.

4. Discussion

Here, we demonstrate for the first time that island tameness exists as a general phenomenon in a large prey taxon by conducting analyses that take into account distance from the mainland, land area, island versus mainland occupancy, body size and predator approach speed in a large comparative dataset, and we account for possible phylogenetic effects. FID increases as distance from the nearest mainland increases, confirming the island tameness hypothesis for lizards. FID is greater in larger species and when approach speed is faster. The relationships between FID and both distance from mainland and island occupancy are robust, as indicated by their statistical significance in models for all taxa and those limited to islands. Thus, the suggestion by Darwin and others that prey on oceanic islands have diminished escape behaviour is supported for lizards, which are a geographically widespread prey clade [36].

The superiority of the OLS models to the phylogenetic models (PGLS and RegOU) suggests that ecological factors may drive changes in FID, forcing prey taxa to make escape decisions appropriate for predation regimes to which their populations have been exposed. This effect appears to eliminate any phylogenetic signal based on relatively ancient events. The relatively poor explanatory power of PGLS and RegOU models, and the utility of the OLS models, underscores this conclusion, which could not have been made without conducting phylogenetically informed analyses in addition to non-phylogenetic analyses. Although no phylogenetic signal was detected for FID, we detected a strong phylogenetic signal for SVL.

Our study shows that island isolation reduces FID, but does not conclusively show that FID is related to island area. In analyses including mainland taxa, collinearity among distance to mainland, land area and island occupancy prevent us from concluding which of these variables is important. Mainland areas are so much larger than those of islands that any potential effect of area is conflated with island occupancy. However, the **Table 1.** OLS regression analyses of effects of log body length, predator approach speed, log(distance to mainland + 0.5), occupancy of island versus mainland and log island area on log FID. The five best models for the entire dataset and two best for island taxa are shown, with *F*-values on the first line for each model and *p*-values on the second. Each model included a subset of the independent variables shown below. Where no value is printed, the factor was not included in a particular model. Degrees of freedom (d.f.) for the entire dataset are 1,58 for models including four independent variables and 1,59 for models with three independent variables. For the island taxa, d.f. = 1,19 for models with four independent variables and 1,20 for models with three. Distance represents log(distance to mainland +0.5), area is log(area), SVL is snout-vent length, and approach speed represents log(approach speed). AIC_o Akaike's information criterion corrected for sample size. Adjusted R^2 -values are for the entire model.

		independent variables included in model				
adjusted R ²	AICc	distance	area	island versus mainland	SVL	approach speed
entire dataset						
0.43	6.57	1.65	1.33		28.11	12.19
		>0.05	>0.05		< 0.00001	0.00093
0.43	5.56	17.82			27.02	13.20
		0.000085			< 0.00001	0.00059
0.42	5.89		17.41		29.62	10.96
			0.00010		< 0.00001	0.0016
0.42	8.10		2.57	0.22	29.44	10.96
			>0.05	>0.05	< 0.00001	0.0016
0.40	8.38			14.44	30.21	11.00
				0.00034	< 0.00001	0.0016
island taxa only						
0.65	- 9.64	17.21			10.83	24.11
		0.00050			0.0037	0.000085
0.63	-6.21	15.74	0.15		9.01	21.96
		0.00082	>0.05		0.0073	0.00016

analyses restricted to island species show a strong effect of distance to mainland on FID, but no effect of island area. Because the two independent variables are not strongly correlated in this subset of the data and we detected an effect of distance to mainland, but not island area, we conclude that FID does not covary with island area in our island dataset. Predator diversity is expected to be greater on larger islands [11], which would predict an increase in FID as island area increases. However, recently introduced predators on islands in the Galapagos Archipelago and Caribbean Sea may have distorted natural processes. Furthermore, our sample size for islands is small (n = 25). A larger sample size is needed to ascertain whether any consistent relationship exists between FID and island area.

In conjunction with frequent reports of decreased diversity and abundance of predators on islands [3,4,6,17,37], reduced FID in lizards on islands is consistent with the conjecture that island tameness evolves when predation is rare or absent, making benefits of fleeing low or non-existent, whereas costs of maintaining escape behaviour remain when predators are scarce. In lacertid lizards of the Mediterranean Basin, FID and other escape variables are reduced on islets with fewer predators [3,4,13,14]. Similar findings have been reported for iguanian lizards [2,6,17]. Antipredatory responses including FID and vigilance are weak where predation is relaxed in macropodid marsupials [9–12] and birds [8]. Our evidence strongly supports the existence of island tameness, but does not provide any direct evidence that it is a consequence of reduced predation.

Rates of evolutionary change in escape and related antipredatory behaviours under reduced predation intensity are largely unknown. However, evolution of island tameness sometimes proceeds rapidly, as shown by a decrease in FID within 30 years after introduction of a lizard population to an island having reduced predation intensity [13]. The lack of a strong phylogenetic effect in our dataset suggests that these differences in FID can evolve very quickly and are not strongly clade-specific. On the other hand, responses to a specific felid predator may be maintained by deer for thousands of years, while the predator has been absent [27]. According to the multipredator hypothesis, antipredator behaviours may be lost rapidly in the complete absence of predators, but are maintained if at least one predator is present [38]. More studies are needed to ascertain the importance of overall predation intensity exerted by local predator guilds, roles of predation by particular predators (and their similarity to other predators) in maintaining escape responses, generation time of prey species and the time scales across which antipredator behaviours evolve and persist.

Actively foraging and ambush foraging lizards differ in many aspects of ecology, behaviour and physiology [39–41]. However, additional analyses (see electronic supplementary material) show that FID did not differ between foraging modes or major taxonomic groups, consistent with the poor performance of the PGLS and RegOU models. Therefore, foraging mode and phylogenetic relationships are excluded as possible sources of bias affecting our conclusions regarding island tameness.

Figure 2. Two-dimensional scatter plots of FID on SVL and distance to mainland for all data. These graphs complement figure 1 in two-dimensional views. (*a*) FID (m) decreases as the distance of the population from the mainland (km) increases. (*b*) FID increases as SVL (mm) increases.

The increase in FID as body length increased establishes prey size as an important factor that affects escape behaviour, extending to lizards similar findings of a comparison among 150 avian species [22]. Although the relationship between FID and prey size is variable [19–21], our results suggest that larger prey may be more attractive to or more easily detected at greater distances by much larger predators. In a few other studies of single species, FID decreased as prey size increased [19], but body sizes of predator and prey were much more similar than in our study. Predation risk in such cases presumably decreased as prey size increased. In addition to the effect of body size on risk, other mechanisms may affect the relationship between prey size and FID, especially effects of body size on opportunity costs of fleeing.

Because frequency of attack, prey responses and survival are affected by predator-prey body size ratios, and these ratios vary over several orders of magnitude [42,43], the relationship between FID and prey size presumably is nonlinear over a wide range of predator-prey body size ratios. We hypothesize that when prey are very small relative to predators, predators do not attack isolated individual prey, resulting in the absence of fleeing or very short FID. As the ratio of prey size to predator size increases, prey are more likely to be attacked and FID presumably increases. With continued increase in prey size, FID may eventually decrease as the prey becomes less vulnerable if attacked. Alternatively, the magnitude of FID has a maximum value at some prey size and decreases at both smaller and larger prey sizes. As further

Figure 3. Three-dimensional scatter plot of FID on SVL and distance to mainland for island taxa. This figure complements figure 1, which includes data for mainland species in addition to the island species shown in figure 3. FID (m) decreases as the distance of the population from the mainland (km) increases, and increases as SVL (mm) increases.

increase in prey size relative to the predator occurs, prey may cease to flee and predator-prey relationships may be reversed.

Predator approach speed has been identified as a major risk factor that affects FID in lizards and other taxa [19]. The large effect of approach speed on FID in our study confirms the importance of approach speed in lizards in a comparative study using data from a phylogenetically diverse sample.

Our study confirms Darwin's observations and numerous anecdotal reports of island tameness. Findings of several studies cited above support Darwin's proposals that escape responses are reduced on remote islands, because predators are scarce or absent there, and natural selection under reduced predation should favour prey that do not waste time and energy developing and performing needless escape. A similar reduction in response to predators that are absent occurs in isolated aquatic ecosystems, especially freshwater systems, where prey are highly vulnerable to introduced predators [44,45].

Some recent evidence suggests that FID is shorter where predation intensity is lower on islands than on the mainland or other islands [4,6,13,14]. However, the generality of this mechanism has not been assessed. To permit a broader assessment of the role of predation in the evolution of island tameness, we encourage comparative analyses that add quantitative estimates of predation intensity to the variables we studied. Despite the evidence for reduced predation on islands, it remains possible that other factors favour island tameness. For example, if food is scarce on islands, the cost of leaving food to flee would favour shortened FID. This would be likely to occur only when food is present, but lizards were not approached while eating in the studies cited. A final caveat: tameness might be learned within each generation, but antipredator responses are known to persist much longer [12]. We expect that genetic changes have occurred across generations, but we have not studied them.

Acknowledgements. We thank many researchers who collected data on escape behaviour, provided data to GenBank and developed phylogenetic methods of statistical analysis. We are grateful to D. Blumstein for critiquing an early draft of this paper, and to several authors who provided data (S. Berger, J. Burger, D. Kelt, R. Powell and others

References

- Darwin C. 1839 Journal of researches into the geology and natural history of the various countries visited by H. M. S. Beagle, under the command of captain Fitzroy, R. N. from 1832 – 1836. London, UK: Henry Colburn.
- Blázquez MC, Rodríguez-Estrella R, Delibes M. 1997 Escape behaviour and predation risk of mainland and island spiny-tailed iguanas (*Ctenosaura Hemilopha*). *Ethology* **103**, 990–998. (doi:10.1111/ j.1439-0310.1997.tb00141.x)
- Cooper Jr WE, Pérez-Mellado V, Vitt LJ. 2004 Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. *J. Zool.* 262, 243–255. (doi:10.1017/ S095283690300462X)
- Cooper Jr WE, Hawlena D, Pérez-Mellado V. 2009 Islet tameness: escape behavior and refuge use in populations of the Balearic lizard (*Podarcis lilfordi*) exposed to differing predation pressure. *Can. J. Zool.* 87, 912–919. (doi:10.1139/Z09-077)
- Cooper Jr WE, Hawlena D, Pérez-Mellado V. 2009 Interactive effect of starting distance and approach speed on escape behaviour challenges theory. *Behav. Ecol.* 20, 542–546. (doi:10.1093/ beheco/arp029)
- Rödl T, Berger S, Romero LM, Wikelski M. 2007 Tameness and stress physiology in a predator-naive island species confronted with novel predation threat. *Proc. R. Soc. B* 274, 577–582. (doi:10.1098/ rspb.2006.3755)
- 7. Lack D. 1983 *Darwin's finches*. Cambridge, UK: Cambridge University Press.
- Humphrey PS, Livesey BC, Siegel-Causey D. 1987 Tameness of birds of the Falkland Islands: an index and preliminary results. *Bird Behav.* 7, 67–72. (doi:10.3727/015613887791918114)
- Blumstein DT. 2002 Moving to suburbia: ontogenetic and evolutionary consequences of life on predator-free islands. *J. Biogeogr.* 29, 685–692. (doi:10.1046/j.1365-2699.2002.00717.x)
- Beauchamp G. 2004 Reduced flocking by birds on islands with relaxed predation. *Proc. R. Soc. Lond. B* 271, 1039–1042. (doi:10.1098/rspb.2004.2703)
- MacArthur RH, Wilson EO. 1967 The theory of island biogeography. Princeton, NJ: Princeton University Press.
- Blumstein DT, Daniel JC. 2005 The loss of antipredator behaviour following isolation on islands. *Proc. R. Soc. B* 272, 1663–1668. (doi:10.1098/rspb. 2005.3147)
- Vervust B, Grbac I, van Damme R. 2007 Differences in morphology, performance and behaviour between recently diverged populations of *Podarcis sicula* mirror differences in predation pressure. *Oikos* **116**, 1343 – 1352. (doi:10.1111/j.0030-1299.2007. 15989.x)

- Cooper Jr WE, Pérez-Mellado V. 2012 Historical influence of predation pressure on escape behavior by *Podarcis* lizards in the Balearic islands. *Biol. J. Linnean Soc.* **107**, 254–268. (doi:10.1111/j. 1095-8312.2012.01933.x)
- Ydenberg RC, Dill LM. 1986 The economics of fleeing from predators. *Adv. Stud. Behav.* 16, 229–249. (doi:10.1016/S0065-3454(08)60192-8)
- Cooper Jr WE, Frederick WG. 2007 Optimal flight initiation distance. *J. Theor. Biol.* 244, 59–67. (doi:10.1016/j.jtbi.2006.07.011)
- Stone PA, Snell HL, Snell HM. 1994 Behavioral diversity as biological diversity: introduced cats and lava lizard wariness. *Conserv. Biol.* 8, 569–573. (doi:10.1046/j.1523-1739.1994.08020569.x)
- Cooper Jr WE, Frederick WG. 2010 Predator lethality, optimal escape behavior, and autotomy. *Behav. Ecol.* 21, 91–96. (doi:10.1093/beheco/arp151)
- Stankowich T, Blumstein DT. 2005 Fear in animals: a meta-analysis and review of risk assessment. *Proc. R. Soc. B* 272, 2627–2634. (doi:10.1098/ rspb.2005.3251)
- Cooper Jr WE, Stankowich T. 2010 Prey or predator? Body size of an approaching animal affects decisions to attack or escape. *Behav. Ecol.* 21, 1278–1284. (doi:10.1093/beheco/arq142)
- Cooper Jr WE. 2011 Age, sex and escape behaviour in the striped plateau lizard (*Sceloporus virgatus*) and the mountain spiny lizard *Sceloporus jarrovi*), with a review of age and sex effects on escape by lizards. *Behaviour* 148, 1215–1238. (doi:10.1163/ 000579511X598334)
- Blumstein DT. 2006 Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. *Anim. Behav.* 21, 389–399. (doi:10.1016/j.anbehav.2005. 05.010)
- Meire PM, Ervynck A. 1986 Are oystercatchers (*Haematopus ostralegus*) selecting the most profitable mussels (*Mytilus edulis*)? *Anim. Behav.* 34, 1427 – 1435. (doi:10.1016/S0003-3472(86)80213-5)
- Cooper Jr WE. 2003 Effect of risk on aspects of escape behavior by a lizard, *Holbrookia propinqua*, in relation to optimal escape theory. *Ethology* **109**, 617–626. (doi:10.1046/j.1439-0310.2003.00912.x)
- Cooper Jr WE. 2003 Risk factors affecting escape behaviour in the desert iguana, *Dipsosaurus dorsalis*: speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature. *Can. J. Zool.* 81, 979–984. (doi:10.1139/z03-079)
- Blumstein DT. 2003 Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manag. 67, 852–857. (doi:10.2307/ 3802692)

- Stankowich T, Coss RG. 2007 The re-emergence of felid camouflage with the decay of predator recognition in deer under relaxed selection. *Proc. R. Soc. B* 274, 175–182. (doi:10.1098/ rspb.2006.3716)
- Smith DG. 1997 Ecological factors influencing the antipredator behaviors of the ground skink, *Scincella lateralis. Behav. Ecol.* 8, 622–629. (doi:10.1093/ beheco/8.6.622)
- Vanhooydonck B, Herrel A, Irschick D. 2007 Determinants of sexual differences in escape behavior in lizards of the genus *Anolis*: a comparative approach. *Integr. Comp. Biol.* 47, 200–210. (doi:10.1093/icb/icm018)
- Pyron RA, Burbrink FT, Wiens JJ. 2013 A phylogeny and updated classification of Squamata, including 4161 species of lizards and snakes. *BMC Evol. Biol.* 13, 93. (doi:10.1186/1471-2148-13-93)
- Pyron RA, Burbrink FT. 2014 Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. *Ecol. Lett.* (doi:10.1111/ ele.12168)
- Rezende EL, Diniz-Filho JAF. 2012 Phylogenetic analyses: comparing species to infer adaptations and physiological mechanisms. *Comp. Physiol.* 2, 639–674. (doi:10.1002/cphy.c100079)
- Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland Jr T. 2008 Morphometrics of the avian small intestine, compared with that of nonflying mammals: a phylogenetic approach. *Physiol. Biochem. Zool.* 81, 536–550. (doi:10.1086/590395)
- 34. Gartner GEA, Hicks JW, Manzani PR, Andrade DV, Abe AS, Wang T, Secor SM, Garland Jr T. 2010 Phylogeny, ecology, and heart position in snakes. *Physiol. Biochem. Zool.* **83**, 43–54. (doi:10.1086/ 648509)
- Blomberg SP, Garland Jr T, Ives AR. 2003 Testing for phylogenetic signal in comparative data: behavioral traits are more labile. *Evolution* 57, 717–745. (doi:10.1554/0014-3820(2003)057[0717:TFPSIC] 2.0.C0;2)
- Pianka GA, Vitt LJ. 2003 *Lizards: windows to the evolution of diversity*. Berkeley, CA: University of California Press.
- Berger S, Wikelski M, Romero LM, Kalko EKV, Rödl T. 2007 Behavioral and physiological adjustments to new predators in an endemic island species, the Galápagos marine iguana. *Horm. Behav.* 52, 653–663. (doi:10.1016/j.yhbeh.2007.08.004)
- Sih A, Englund G, Wooster D. 1998 Emergent impacts of multiple predators on prey. *Trends Ecol. Evol.* **13**, 350–355. (doi:10.1016/S0169-5347(98)01437-2)
- Huey RB, Pianka ER. 1981 Ecological consequences of foraging mode. *Ecology* 62, 991–999. (doi:10. 2307/1936998)

- Cooper Jr WE. 1997 Correlated evolution of prey chemical discrimination with foraging, lingual morphology, and vomeronasal chemoreceptor abundance in lizards. *Behav. Ecol. Sociobiol.* 41, 257–265. (doi:10.1007/s002650050387)
- 41. Reilly SM, McBrayer LB, Miles DB. 2007 Lizard ecology: the evolutionary consequences of foraging mode. New York, NY: Cambridge University Press.
- Lundvall D, Svanbäck R, Persson L, Byström P. 1999 Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. *Can. J. Fish Aquat. Sci.* 56, 1285 – 1292.
- Preisser EL, Orrock JL. 2012 The allometry of fear: interspecific relationships between body size and response to predation risk. *Ecosphere* 3, 77. (doi:10.1890/ES12-00084.1)
- Cox JG, Lima S. 2006 Naiveté and an aquatic terrestrial dichotomy in the effects of introduced predators. *Trends Ecol. Evol.* **21**, 674–680. (doi:10. 1016/j.tree.2006.07.011)
- Sih A, Bolnick DJ, Luttberg B, Orrock JL, Peacor SD, Pintor LM, Preisser E, Rehage JS, Vonesh JR. 2010 Predator-prey naïveté, antipredator behavior, and the biology of predator invasions. *Oikos* **119**, 610–621. (doi:10.1111/j.1600-0706.2009.18039.x)

1 ELECTRONIC SUPPLEMENTARY MATERIAL

2 ESM 1. SUPPLEMENTARY ANALYSES: FORAGING MODE, HIGHER TAXA, 3 AND FID

4 Foraging modes of insectivorous/carnivorous lizards strongly affect many aspects of

5 lizard ecology and behaviour [1-3]. To exclude any bias of our main findings due to

6 differences in foraging modes, we conducted a nonphylogenetic analysis of covariance

7 using SVL as covariate and excluding herbivorous species (the iguanids in

8 Amblyrhynchus, Ctenosaura, Dipsosaurus, and Sauromalus). Active foragers included 19

9 species of skinks in the genera Carlia, Egernia, Plestiodon, and Trachylepis, lacertids in

10 the genera Iberolacerta, Lacerta, Podarcis, and Psammodromus, and teiids in the genera

11 Aspidoscelis and Cnemidophorus; the remaining 40 species were ambush foragers. The

12 analysis of covariance using logarithmic transformations of FID and SVL revealed no

13 difference in FID between active and ambush foragers ($F_{1,56} = 0.62, P = 0.44$). Because

14 foraging modes are stable within most lizard families (Cooper 1997) and our data set

15 does not include cases of intrafamilial transitions between modes, it remains possible that

16 foraging mode influences FID.

Our data set included more than one species of three higher taxa recognized in recent phylogenies (Vidal & Hedges 2005), Iguania (represented here by 43 species), Scinciformata (represented here by 8 species of Cordylidae and Scincidae), and Laterata (represented here by 14 species of Lacertidae and Teiidae). We conducted an analysis of covariance using log SVL as a covariate to assess any influence of clade membership on log (FID). Flight initiation distance did not differ significantly among the higher taxa ($F_{2.61} = 0.19, P = 0.83$). Although our data reveal no statistical differences in FID among

24	these	major taxa, it is important to note that several major groups were not included in the
25	data	set, especially Gekkota and Anguimorpha.
26		
27	(c) <i>R</i>	eferences
28		
29	1.	Cooper, W. E., Jr. 1997 Correlated evolution of prey chemical discrimination with
30		foraging, lingual morphology, and vomeronasal chemoreceptor abundance in lizards.
31		Behav Ecol Sociobiol 41, 257-265.
32	2.	Huey, R. B. & Pianka, E. R. 1981 Ecological consequences of foraging mode. Ecology
33		62, 991-
34	3.	Vidal, N. & Hedges, S. B. 2005 The phylogeny of squamate reptiles (lizards, snakes, and
35		amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol 328, 1000-
36		1008.
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		

51 Table ESM1. Taxa, flight initiation distance (FID), distance from mainland (km), land area

52 (km²)[^], snout-vent length (SVL), and predator approach speed[#].

Species	FID	Distance*	Area	SVL	Approach
					speed
Rhotropus boultoni	1.4 ¹	0	30,370,000	74 ²	0.75
Cordylus niger	9.3 ³	0	30,370,000	92 ²	1.00
Platysaurus intermedius	3.1 ⁴	0	30,370,000	129 ²	0.80
Platysaurus broadleyi	4.8 ⁵	0	30,370,000	86 ²	1.08
Carlia scirtetis	1.2^{6}	0	9,008,500	60 ⁷	1.10
Carlia mundivensis	2.5^{6}	0	9,008,500	50 ⁷	1.10
Egernia cunninghami	2.4^{8}	0	9,008,500	150 ⁷	0.62
Plestiodon laticeps	1.9 ⁹	0	24,490,000	143 ¹⁰	1.00
Trachylepis sparsa	4.6 ³	0	30,370,000	108 ²	1.08
Trachylepis acutilabris	2.2^{3}	0	30,370,000	60^{2}	1.08
Cnemidophorus murinus	3.3 ¹¹	180	288	159 ¹²	0.77
Aspidoscelis tigris	5.9 ¹³	0	24,490,000	112 ¹⁴	0.60
Aspidoscelis exsanguis	2.7^{15}	0	24,490,000	98 ¹⁴	0.70
Psammodromus algirus	2.5^{16}	0	10,180,000	75 ¹⁷	NA
Lacerta viridis	1.9 ¹⁸	0	10,180,000	104 ¹⁷	0.5
Lacerta vivipara	1.2 ¹⁹	0	10,180,000	65 ²⁰	0.75

89 90	Iberolacerta horvathi	1.6 ²¹	0	10,180,000	65 ²⁰	0.75
91 92	Lacerta perspicillata pellegrina	1.5 ²²	0	30,370,000	56 ²²	0.45
93 94	Lacerta p. chabanaudi	2.2^{22}	0	30,370,000	85 ²²	0.45
95 96	Podarcis pityusensis	2.2^{23}	96	94	96 ¹⁷	0.80
90 97 08	Podarcis lilfordi	2.7 ²³	180	0	81 ¹⁷	0.83
99 100	Podarcis muralis	1.1 ²⁴⁻²⁵	0	10,180,000	75 ¹⁷	0.67
100 101 102	Podarcis sicula	2.3^{26}	31	1	90 ¹⁷	0.56
102 103 104	Podarcis melisellensis	1.327	24	47	65 ²⁰	NA
104 105 106	Lophognathus temporalis	4.0^{28}	0	9,008,500	104 ⁷	1.00
100 107 108	Agama planiceps	5.0 ¹	0	30,370,000	112 ²	0.92
100 109 110	Liolaemus multimaculatus	2.1 ²⁹	0	17,840,000	70^{30}	V
110 111 112	Liolaemus lemniscatus	1.7 ³¹	0	17,840,000	54 ³²	0.48
112 113 114	Liolaemus nigromaculatus	4.2 ³³	0	17,840,000	150 ³⁴	0.76
115 116	Liolaemus fuscus	1.9 ³¹	0	17,840,000	59 ³²	0.48
117 118	Liolaemus monticola	1.9 ³¹	0	17,840,000	76 ³⁵	0.48
110 119 120	Microlophus bivittatus	0.4 ³⁶	972	558	63 ³⁷	0.50
120 121 122	Microlophus delanonis	0.7 ¹³	972	60	129 ³⁷	0.50
122 123 124	Microlophus albemarlensis	0.813	972	1761	104 ³⁷	0.50
125 126	Crotaphytus collaris	8.7 ³⁸	0	24,490,000	112^{14}	0.83
120 127 128	Leiocephalus carinatus	3.5 ³⁹	0	24,490,000	105^{40}	1.00
120 129 130	Dipsosaurus dorsalis	0.841	0	24,490,000	144^{14}	0.67
130 131 132	Amblyrhynchus cristatus	2.8 ⁴²	972	1,035	550 ⁴³	0.50
132 133 134	Ctenosaura hemilopha	5.844	9	160	308 ⁴⁵	0.50
135 136	Ctenosaura similis	14.7 ⁴⁶	0	24,490,000	489 ⁴⁷	1.00
137 138	Sauromalus ater	18.9 ⁴⁸	0	24,490,000	224 ⁴⁸	0.50

139 140	Sauromalus hispidus	4.5 ⁴⁸	11	632	371 ⁴⁸	0.50
140 141 142	Sauromalus varius	1.4^{48}	37	45	323 ⁴⁸	0.50
142 143 144	Urosaurus bicarinatus	2.0^{49}	0	24,490,000	52 ⁵⁰	0.62
145 146	Urosaurus ornatus	1.3 ⁵¹	0	24,490,000	56 ¹⁴	0.56
147 148	Holbrookia propinqua	1.9 ⁵²	0	24,490,000	71 ¹⁰	0.85
149 150	Callisaurus draconoides	7.9 ⁵³	0	24,490,000	101 ¹⁴	0.84
150 151 152	Cophosaurus texanus	4.7 ⁵³	0	24,490,000	75^{14}	0.84
152 153 154	Sceloporus gadoviae	2.8 ⁴⁹	0	24,490,000	69 ⁵⁴	0.62
155 156	Sceloporus grammicus	2.6 ⁴⁹	0	24,490,000	68 ⁵⁵	0.62
157 158	Sceloporus virgatus	1.8 ⁵⁶	0	24,490,000	69 ¹⁴	0.75
150 159 160	Sceloporus occidentalis	2.6 ⁵⁷	0	24,490,000	87 ¹⁴	NA
161 162	Sceloporus mucronatus	6 .1 ⁴⁹	0	24,490,000	104 ⁵⁸	0.62
162 163 164	Sceloporus jarrovii	2.3^{59-61}	0	24,490,000	97 ¹⁴	0.94
165 166	Anolis coelestinus	1.1^{62}	700	76,480	84 ⁴⁰	0.80
167 168	Anolis bahorucoensis	1.2^{62}	700	76,480	51 ⁴⁰	0.80
169 170	Anolis cybotes	1.5^{62}	700	76,480	77^{40}	0.80
170 171 172	Anolis lineatopus	1.1^{63-64}	850	10,990	70^{40}	0.92
172 173 174	Anolis grahami	1.2^{64}	850	10,990	75 ⁴⁰	1.01
175 176	Anolis distichus	0.8^{62}	700	76,480	58 ⁴¹	0.80
170 177 178	Anolis evermanni	1.7^{65}	900	8,959	70 ⁶⁶	1.05
170 179 180	Anolis stratulus	1.2^{65}	900	8,959	44 ⁶⁶	1.05
180 181 182	Anolis cooki	1.7^{65}	900	8,959	70 ⁶⁶	1.05
102 183 194	Anolis cristatellus	2.8^{65}	900	8,959	75 ⁶⁶	1.05
104 185 186	Anolis gundlachi	3.8 ⁶⁵	900	8,959	68 ⁶⁶	1.05
187 188	Anolis krugi	2.5 ⁶⁵	900	8,959	45 ⁶⁶	1.05

189 190	Anoli	is pulchellus	2.2^{66}	900	8,959	47 ⁶⁶	1.05		
191 192	Dista	nces from mainland	(km) were deter	mined from	the papers cited for	or FID (m) an	ud SVL (mm)		
193	for m	for mainland populations and from cited papers or estimated from maps for island populations. ^							
194	Land	areas (km ²) were ob	tained from the	papers cited,	Wikipedia and o	ther web sour	ces, and		
195	from	geographic atlases. H	For mainland tax	a the area of	the continent wa	s used. # Prec	lator		
196	appro	bach speeds (m/s) we	re taken from th	e cited paper	s or were obtaine	d from their a	authors. NA		
197	– not	available. V – Data	not analyzed du	e to decreasi	ng speed during a	approach.			
198									
199	(b) S	Sources for data in	table						
200									
201	1.	Cooper, W. E., J	Ir. & Whiting,	M. J. 2007	Universal optim	ization of fli	ght initiation		
202		distance and hab	oitat-driven var	iation in eso	cape tactics in a	Namibian li	zard assemblage.		
203		<i>Ethology</i> 113 , 60	61-672.						
204	2.	Branch, B. 1998	Field Guide to	o Snakes an	d other Reptiles	of Southern	Africa. Sanibel		
205		Island, Florida:	Ralph Curtis B	ooks.					
206	3.	Cooper, W. E., J	Ir. & Whiting,	M. J. 2007	Effects of risk o	n flight initi	ation distance and		
207		escape tactics in	two southern	African liza	rd species. Act 2	Zool Sin 53 ,	446-453.		
208	4.	Lailvaux, S. P.,	Alexander, G.	J. & Whitin	g, M. J. 2003 Se	ex-based dif	ferences and		
209		similarities in lo	comotor perfo	rmance, the	rmal preference	s, and escape	e behaviour in the		
210		lizard Platysaur	us intermedius	. Physiol Bi	och Zool 76 , 51	1-521.			
211	5.	Whiting, M. J. 2	002 Field expe	eriments on	intersexual diffe	erences in pr	edation risk in the		
212		lizard Platysaur	us broadleyi. A	mphib-Rep	t 23 , 119-124.				
213	6.	Goodman, B. A.	. 2007 Diverge	nt morphlog	gies, performanc	e, and escap	be behaviour in tov		

214		tropical rock-using lizards (Reptilia: Scincidae). Biol J Linn Soc 91, 85-98.
215	7.	Cogger, H. C. 1992 Reptiles and Amphibians of Australia. Ithaca, New York: Cornell
216		University Press.
217	8.	Eifler, D. 2001 Egernia cunninghami (Cunningham, skink). Escape behavior.
218		HerpetolRev 32 , 40.
219	9.	Cooper, W. E., Jr. 1997 Correlated evolution of prey chemical discrimination with
220		foraging, lingual morphology, and vomeronasal chemoreceptor abundance in lizards.
221		Behav Ecol Sociobiol 41, 257-265.
222	10.	Conant, R. & Collins, J. T. 1998 A Field Guide to Reptiles and Amphibians:
223		Eastern/Central North America. New York: Houghton Mifflin.
224	11.	Cooper, W. E., Jr., Pérez-Mellado, V., Baird, T., Baird, T. A., Caldwell, J. P. & Vitt, L. J.
225		2003 Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire
226		whiptail lizards, Cnemidophorus murinus. Behav Ecol 14, 288-293.
227	12.	Dearing, M. D. & Schall, J. J. 1994 Atypical reproduction and sexual dimorphism of the
228		tropical Bonaire island whiptail lizard, <u>Cnemidophorus murinus</u> . Copeia 1994, 760-766.
229	13.	Hotchkin, P. & Riveroll, H., Jr. 2005 Comparative escape behavior of Chihuahuan Desert
230		parthenogenetic and gonochoristic whiptail lizards. Southw Nat 50, 172-177.
231	14.	Stebbins, R. C. 2003 A field guide to western reptiles and amphibians. Boston: Houghton
232		Mifflin.
233	15.	Cooper, W. E., Jr. 2008 Strong artifactual effect of starting distance on flight initiation
234		distance in the actively foraging lizard Aspidoscelis exsanguis. Herpetologica 64, 200-
235		206.
236	16.	Martin, J. & Lopez, P. 1999 Nuptial coloration and mate-guarding affect escape decisions

237		of male lizards, Psammodromus algirus. Ethology 105, 439-447.
238	17.	Barbadillo, L. J., Lacomba, L. J., Pérez-Mellado, V., Sancho, V., and López-Jurado, L. F.
239		1999 Anfibios y reptiles de la Peninsula Iberica, Baleares, y Canarias. Barcelona:
240		GeoPlaneta.
241	18.	Majlálth, I. & Majláthova, V. 2009 Escape behaivor of the green lizard (Lacerta viridis)
242		in the Slovak Karst. Act Ethol 12, 115-120.
243	19.	Bauwens, D. & Thoen, C. 1981 Escape tactics and vulnerability to predation associated
244		with reproduction in the lizard Lacerta vivipara. J Anim Ecol 50, 733-743.
245	20.	Arnold, E. N. & Ovendon, D. W. 2002 Reptiles and amphibians of Europe. Princeton:
246		Princeton University Press.
247	21.	Capizzi, D., Luiselli, L. & Vignoli, L. 2007 Flight initiation distance in relation to
248		substratum type, sex, reproductive status and tail condition in two lacertids with
249		contrasting habits. Amph-Rept 28, 403-407.
250	22.	Carretero, M. A., Vasconcelo, R., Fonseca, M., Kaliontzopoulou, A., Brito, J. C., Harris,
251		J. & Perera, A. 2006 Escape tactics of two syntopic forms of the Lacerta perspicillata
252		complex with different colour patterns. Can J Zool 84, 1594-1603.
253	23.	Cooper, W. E., Jr. & Pérez-Mellado, V. 2012 Historical influence of predation pressure
254		on escape behavior by Podarcis lizards in the Balearic Islands. Biol J Linn Soc 107, 254-
255		268.
256	24.	Braña, F. 1993 Shifts in body temperature and escape behavior of female Podarcis
257		muralis during pregnancy. Oikos 66, 216-222.
258	25.	Diego-Rasilla, F. J. 2003 Influence of predation pressure on the escape behaviour of
259		Podarcis muralis lizards. Behav Proc 63, 1-7.

260 26. Vervust, B., Grbac, I. & van Damme, R. 2007 Differences in morphology, performance 261 and behaviour between recently diverged populations of *Podarcis sicula* mirror 262 differences in predation pressure. *Oikos* **116**, 1343-1352. 263 27. Brecko, J., Huyghe, K., Vanhooydonck, B., Herrel, A., Grbac, I. & Van Damme, R. 2008 264 Functional and ecological relevance of intraspecific variation in bosy size and shape in 265 the lizard Podarcis melisellensis (Lacertidae). Biol J Linn Soc 94, 251-264. 266 28. Blamires, S. J. 1999 Factors influencing the escape response of an arboreal agamid lizard 267 of tropical Australia (Lophognathus temporalis) in an urban environment. Can J Zool 77, 268 1998-2003. 269 29. Kacoliris, F. P., Gurrero, E., Molinari, A., Moyano, B. & Rafael, A. 2009 Run to shelter 270 or bury into the sand? Factors affecting escape behaviour decisions in Argentinian sand 271 dun lizards (Liolaemus multimaculatus). Herpetol J 19, 213-216. 272 30. Cei, J. M. 1993 Reptiles del noroeste, nordeste y este de la Argentina. Torino, Italy: 273 Museo Regionale di Scienze Naturali. 274 31. Labra, A. & Leonard, R. 1999 Intraspecific variation in antipredator response of three 275 species of lizards (Liolaemus): possible effects of human presence. J Herpetol 33, 441-276 448. 277 32. Cei, J. M. 1986 Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de 278 las zonas aridas y semiaridas. Torino, Italy: Museo Regionale di Scienze Naturali. 279 33. Kelt, D. A., Nabors, L. K. & Forister, M. L. 2002 Size-specific differences in tail loss and 280 escape behavior in *Liiolaemus nigromaculatus*. J Herpetol **36**, 322-325. 281 34. Jaksic, F. M. & Nunez, H. 1979 Escape behavior and morphological correlates in two 282 *Liolaemus* species of Central Chile (Lacertilia: Iguanidae). *Oecologia* 42, 119-122.

283	35.	Fox, S. F. & Shipman, P. A. 2003 Social behavior at high and low elevations:
284		environmental release and phylogenetic effects in Liolaemus. In Lizard Social Behavior
285		(ed. S. F. Fox, J. K. McCoy & T. A. Baird), pp. 310-355. Baltimore: Johns Hopkins
286		University Press.
287	36.	Stone, P. A., Snell, H. L. & Snell, H. M. 1994 Behavioral diversity as biological
288		diversity: introduced cats and lava lizard wariness. Conserv Biol 8, 569-573.
289	37.	Ord, T. J. & Blumstein, D. T. 2002 Size constraints and the evolution of display
290		complexity: why do large lizards have simple displays? Biol J Linn Soc 76, 145-161.
291	38.	Husak, J. F. & Rouse, M. N. 2006 Population variation in escape behaviour and limb
292		morphology of collared lizards (Crotaphytus collaris) in Oklahoma. Herpetologica 62,
293		156-163.
294	39.	Cooper, W. E., Jr. 2007 Escape and its relationship to pursuit-deterrent signalling in the
295		Cuban curly-tailed lizard Leiocephalus carinatus. Herpetologica 63, 144-150.
296	40.	Schwartz, A. & Henderson, R. W. 1991 Amphibians and Reptiles of the West Indies:
297		descriptions, distributions, and natural history. Gainesville: University of Florida Press.
298	41.	Cooper, W. E., Jr. 2003 Risk factors affecting escape behaviour in the desert iguana,
299		Dipsosaurus dorsalis: speed and directness of predator approach, degree of cover,
300		direction of turning by a predator, and temperature. Can J Zool 81, 979-984.
301	42.	Berger, S., Wikelski, M., Romero, L. M., Kalko, E. K. V. & Rödl, T. 2007 Behavioral
302		and physiological adjustments to new predators in an endemic island species, the
303		Galápagos marine iguana. Horm Behav 52, 653-663.
304	43.	Wikelski, M. 2005 Evolution of body size in Galapagos marine iguanas. Proc Roy Soc
305		Lond B 272, 1985-1993.

306 44. Blázquez, M. C., Rodríguez-Estrella & Delibes, M. 1997 Escape behaviour and predation 307 risk of mainland and island spiny-tailed iguanas (*Ctenosaura hemilopha*). Ethology **103**, 308 990-998. 309 45. Grismer, L. L. 2002 Amphibians and reptiles of Baja California including its Pacific 310 islands and islands in the Sea of Cortés. Berkeley: University of California Press. 311 46. Burger, J. & Gochfeld, M. 1990 Risk discrimination of direct versus tangential approach 312 by basking black iguana (*Ctenosaura similis*): variation as a function of human exposure. 313 J Comp Psychol 104, 388-394. 314 47. Savage, J. M. 2002 The amphibians and reptiles of Costa Rica: a herpetofauna between 315 two continents, between two seas. Chicago: University of Chicago Press. 316 48. Shallenberger, E. W. 1970 Tameness in insular animals: a comparison of approach 317 distances of insular and mainland iguanid lizards. University of California at Los Angeles 318 Los Angeles. 319 49. Smith, G. R. & Lemos-Espinal, J. A. 2005 Comparative escape behavior of four species 320 of Mexican phrynosomatid lizards. *Herpetologica* **61**, 225-232. 321 50. Ramirez-Bautista, A., Gutierrez-Mayen, G. & Gonzalez-Romero, A. 1995 Clutch sizes in 322 a community of snakes from the mountains of the Valley of Mexico. *Herpetol Rev* 26, 323 12-13. 324 51. Cooper, W. E., Jr. 2005 When and how does starting distance affect flight initiation 325 distance. Can J Zool 83, 1045-1050. 326 52. Cooper, W. E., Jr. 2003b Effect of risk on aspects of escape behavior by a lizard, 327 *Holbrookia propingua*, in relation to optimal escape theory. *Ethology* **109**, 617-626.

328 53. Bulova, S. J. 1994 Ecological correlates of population and individual variation in

220		antiprodutor behavior of two species of desert lizerds. Cancia 1004, 080, 002
329		antipredator behavior of two species of desert fizards. Copeta 1994, 980-992.
330	54.	Lemos-Espinal, J., Smith, G. R. & Ballinger, R. E. 1996 Ventral blue coloration and
331		sexual maturation in male Sceloporus gadoviae lizards. J Herpetol 30, 546-548.
332	55.	Ramírez-Bautista, A., Maciel-Mata, C. A. & Martínez-Morales, M. A. 2005
333		Reproductive cycle of the viviparous lizard Sceloporus grammicus (Squamata:
334		Phrynosomatidae) from Pachuca, Hidalgo, Mexico. Curr Zool 51, 998-1005.
335	56.	Cooper, W. E., Jr. 2009 Optimal escape theory predicts escape behaviors beyond flight
336		initiation distance: risk assessment and escape by striped plateau lizards Sceloporus
337		virgatus. Curr Zool 55, 123-131.
338	57.	Johnson, C. R. 1970 Escape behavior and camouflage in two subspecies of Sceloporus
339		occidentalis. Am Midl Nat 84, 280-282.
340	58.	Ortega-Leon, A. M., Smith, E. R., Zuniga-Vega, J. J. & Mendez-de la Cruz, F. R. 2007
341		Growth and demography of one population of the lizard Sceloporus mucronatus
342		mucronatus. West N Amer Nat 67, 492-502.
343	59.	Cooper, W. E., Jr. 2011 Age, sex and escape behaviour in the striped plateau lizad
344		(Sceloporus virgatus) and the mountain spiny lizard (Sceloporus jarrovii), with a review
345		of age and sex effects on escape by lizards. Behaviour 148, 1215-1238.
346	60.	Cooper, W. E., Jr. & Avalos, A. 2010 Escape decisions by the syntopic congeners
347		Sceloporus jarrovii and S. virgatus: comparative effects of perch height and of predator
348		approach speed, persistence, and direction of turning. J Herpetol 44, 425-430.
349	61.	Cooper, W. E., Jr. & Avalos, A. 2010 Predation risk, scape and refuge use by mountain
350		spiny lizards (Sceloporus jarrovii). Amph-Rept 31, 363-373.
351	62.	Schneider, K. R., Parmerlee, J. S., Jr. & Powell, R. 2000 Escape behavior of Anolis

352		lizards from the Sierra de Baoruco, Hispaniola. Carib J Sci 36, 321-323.
353	63.	Cooper, W. E., Jr. 2006 Dynamic risk assessment: prey rapidly adjust flight initiation
354		distance to changes in predator approach speed. Ethology 112, 858-864.
355	64.	Cooper, W. E., Jr. 2010 Escape tactics and effects of perch height and habituation on
356		flight initiation distance in two Jamaican anoles (Squamata: Polychrotidae). Rev Biol
357		<i>Trop</i> 58 , 1199-1209.
358	65.	Cooper, W. E., Jr. 2006 Risk factors affecting escape behaviour by Puerto Rican Anolis
359		lizards. Can J Zool 84, 495-504.
360	66.	Rivero, J. A. 1978 The amphibians and Reptiles of Puerto Rico. Barcelona: University of
361		Puerto Rico Press.
362 363		
364	APPI	ENDIX 1. NEXUS FORMAT OF THE RECOVERED PHYLOGENY
365	SHO	WING TAXA AND MOLECULAR BRANCH LENGTHS
~ · · ·		

367	(G1_Rhotropus	_boultoni:	168.832222,((((C2 <u> </u>	_Platysaurus_	_broadleyi:36.321	531,C1_	_Platy
-----	---------------	------------	----------------------------	---------------	-------------------	---------	--------

368 saurs_intermedius:36.321531):30.861595,C3_Cordylus_niger:67.183125):84.624859,(S6

269 _Plestiodon_laticeps:87.343384,((S3_Egernia_cunninghami:71.336135,(S2_Trachylepis_

370 sparsa:32.10747,S1_Trachylepis_acutilabris:32.107469):39.228664):3.800332,(S5_Carli

371 a_mundivensis:14.874649,S4_Carlia_scirtetis:14.874649):60.261818):12.20692):64.4646

372):14.80675,(((T5_Cnemidophorus_murinus:42.438233,(T4_Aspidoscelis_exsanguis:29.8

373 05591,T1_Aspidoscelis_tigris:29.805591):12.632641):111.54368,(L1_Psammodromus_a

374 lgirus:84.808652,(LA_Lacerta_vivipara:51.107193,((L9_Lacerta_viridis:45.220753,((L7

375	_Lacerta_perspicillata_pellegtini:20.3730215,L8_Lacerta_perspicillata_chabanaudi:20.3
376	730215):20.3730215,(L3_Podarcis_melisellensis:20.2741,((L4_Podarcis_sicula:13.4807
377	84,L2_Podarcis_muralis:13.480784):5.030651,(L5_Podarcis_lilfordi:6.562778,L6_Podar
378	cis_pityusensis:6.562778):11.948657):1.762664):20.471944):4.47471):2.557182,LB_Ibe
379	rolacerta_horvathi:47.777935):3.329258):33.701459):69.173261):8.230566,((A2_Lopho
380	gnathus_temporalis:98.355928,A1_Agama_planiceps:98.355929):48.044071,((Z1_Micro
381	lophus_bivittatus:39.396408,(Z2_Microlophus_delanonis:18.84786,Z3_Microlophus_alb
382	emarlensis:18.84786):20.548548):65.223696,((I7_Dipsosaurus_dorsalis:66.283708,((I4_
383	Sauromalus_ater:8.877658,(I6_Sauromalus_varius:2.872656,I5_Sauromaus_hispidus:2.8
384	72656):6.005002):26.971676,(I3_Amblyrhynchus_cristatus:26.362375,(I2_Ctenosaura_s
385	imilis:18.877699,I8_Ctenosaura_hemilopha:18.877699):7.484675):9.486958):30.434376
386):33.20995,(W1_Leiocephalus_carinatus:96.243801,((N1_Crotaphytus_collaris:87.7674,(
387	(XB_Calllisaurus_draconoides:24.866111,(X1_Cophpsaurus_texanus:22.339153,X2_Hol
388	brookia_propinqua:22.339154):2.526958):29.856636,((X3_Urosaurus_bicarinatus:35.78
389	337,X4_Urosaurus_ornatus:35.783369):8.631643,(XA_Sceloporus_gadoviae:29.216999,
390	(X9_Scelopororus_grammicus:18.321284,((X8_Sceloporus_jarrovii:16.395538,X7_Scel
391	oporus_mucronatus:16.395538):1.066803,(X6_Sceloporus_occidentalis:10.998751,X5_S
392	celoporus_virgatus:10.998752):6.46359):0.858943):10.895716):15.198012):10.307734):
393	33.044654):5.168531,(((R1_Liolaemus_lemniscatus:18.720367,(R2_Liolaemus_fuscus:1
394	5.951543,R3_Liolaemus_monticola:15.951543):2.768824):3.867377,R4_Liolaemus_nigr
395	omaculatus:22.587743):66.243868,((P1_Anolis_bahorucoensis:39.614992,PD_Anolis_co
396	elestinus:39.614993):4.446784,(P2_Anolis_cybotes:39.197212,((P1_Anolis_distichus:29.
397	887805,((P9_Anolis_evermanni:11.360637,P3_Anolis_stratulus:11.360637):13.760293,(

- 398 ((P7_Anolis_krugi:12.249602,P8_Anolis_pulchellus:12.249602):6.03237,P6_Anolis_gun
- 399 dlachi:18.281971):3.086306,(P4_Anolis_cooki:16.456944,P5_Anolis_cristatellus:16.456
- 400 944):4.911334):3.752652):4.766875):8.044364,(PC_Anolis_lineatopus:27.454935,PB_A
- 401 nolis_grahami:27.454934):10.477234):1.265043):4.864566):44.769833):4.104321):3.307
- 402 87):3.249858):5.126445):41.779896):15.812478):4.402257):2.217488);