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Over-water dispersal to small islets is an important eco-evolutionary process. Most often, new arrivals on islets 
find the environment harsh or mate-less, making their footholds on these islets fleeting. Occasionally, introduced 
animals are able to survive the strong selection following their arrival, leading to subsequent propagation and, 
in several famous cases, adaptive radiation. What traits predict that initial survival? We established a replicated 
island introduction experiment to investigate this process in lizards. In 2014, we introduced 20 Podarcis erhardii 
lizards to each of five small islets in the Greek Cyclades Islands. We found that the lizards that survived were 
those with better initial body condition, longer distal portions of their limbs and a greater propensity for jumping. 
Contrary to our expectations, neither body size nor the strength of the lizards’ bite – two traits positively related to 
competitive ability, which becomes important later in the colonization process in lizards – predicted survival. This 
is the first selection study of its kind investigating an experimental introduction of Podarcis, and whether the traits 
that determined initial survival are important in driving the future evolutionary trajectories of these populations 
remains to be determined.

ADDITIONAL KEYWORDS:  Cyclades Islands – experimental evolution – functional morphology – Greece – 
island ecology – lizard – natural selection – Podarcis.

INTRODUCTION

Dispersal from source populations to surrounding 
habitat patches such as satellite islands is a dynamic 
and important eco-evolutionary process. Over-water 
dispersal has led to multiple adaptive radiations across 
island chains and to the origin of countless unique 
island endemics (Gillespie et al., 2020). Whereas traits 
impacting over-water dispersal have been investigated 
(Vazacova & Munzbergova, 2014; García-Verdugo et al., 
2019), our understanding of the traits determining 
survival after dispersal remains limited. Studies on 
dispersal and the colonization of novel areas have 
suggested that traits related to body size (Clegg et al., 
2008; Van Bocxlaer et al., 2010), locomotor capacity 

(Phillips et al., 2006), behaviour (Cote et al., 2010; 
Brodin et al., 2013), life-history (Van Bocxlaer et al., 
2010) and fat reserves (Van Bocxlaer et al., 2010) may 
all be related to their establishment success. However, 
the traits important in the survival of individuals 
on small islands may differ significantly from those 
identified in studies of mainland communities given 
the dramatic differences in competition, predation and 
resource availability.

Life on small islands can be challenging in many 
ways: food, shelter and access to mates are often 
limited, resulting in a highly competitive insular 
environment (Pafilis et al., 2009; Donihue et al., 2016; 
Taverne et al., 2019). However, at the same time small 
islets rarely host terrestrial predators, thus resulting 
in lower predation pressures (Brock et al., 2014; Li 
et al., 2014; Donihue et al., 2020). In ectotherms such 
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as lizards, living on small islands has led to rapid 
and substantial evolutionary changes in diet (Cooper 
& Vit, 2002; Sagonas et al., 2014), gut morphology 
(Herrel et al., 2008; Wehrle et al., 2020) and changes 
in performance (Van Damme et al., 1997; Herrel et al., 
2001, 2008), possibly in response to the strong selection 
on animals in these harsh environments. The selection 
on animals that survive over-water dispersal to small 
islets can be expected to be strong, rapidly redirecting 
the evolutionary trajectory of the arriving individuals 
(Clegg et al., 2008; Aubret & Shine, 2009).

Establishment in novel environments typically 
has two phases: initially, populations must acquire 
food and survive to reproduce, and later, a second 
phase is characterized by intraspecific competition for 
resources. The traits that determine initial survival 
after arrival on an islet remain largely unknown, 
yet these traits play an outsized role in directing the 
subsequent evolutionary trajectory of small-islet 
populations due to founder effects. The most direct 
approach to understanding these patterns is with 
in situ experiments, whereby measured animals are 
introduced onto experimental islands (Radovanovic, 
1956; Nevo et al., 1972), thus enabling the calculation 
of individual trait-based survival in an ecologically 
relevant setting. We set up just such an experiment with 
the Aegean wall lizard, Podarcis erhardii. This species 
is a common and ecologically important meso-predator 
that is widespread throughout the Greek Cycladic 
Islands (Valakos et al., 2008; Fig. 1). Two ecological 
processes have largely determined the biogeography of 

P. erhardii in the Cyclades: first, when sea levels were 
lower during the last glacial maximum many of the 
islands of the Cyclades were connected by land bridges, 
forming a single contiguous landmass allowing for 
dispersal. Second, multiple islands separated by deep 
channels in the Mediterranean have been populated by 
lizard species via over-water dispersal (Foufopoulos & 
Ives, 1999), making this system relevant for testing the 
traits that determine colonization success.

We test here whether traits predicted to be under 
selection in the introduced lizards impacted survival. 
First, we hypothesized that larger lizards would have 
a survival advantage; larger P. erhardii are known to 
be competitively dominant (Pafilis et al., 2009) and so 
should be better able to gain access to scarce resources 
on the islets. Second, we hypothesized that animals 
with a better body condition (i.e. greater fat reserves 
for their body size) would be more likely to survive the 
introduction as they would be able to survive periods of 
food scarcity. Third, we hypothesized that lizards with 
a stronger bite force would survive better. Bite force 
in lizards dictates both an individual’s competitive 
dominance (Lailvaux et al., 2004; Huyghe et al., 
2005) and its ability to access a wider breadth of food 
resources including plant material or hard-shelled 
invertebrates (Verwaijen et al., 2002; Aguirre et al., 
2003; Herrel et al., 2006). Finally, we predicted that 
animals that showed increased locomotor performance 
and longer limbs would survive better as they should 
be able to gain easier and more rapid access to insular 
resources, thus dominating intraspecific competition.

Figure 1. Map of Paros in the Greek Cyclades (inset) and its surrounding islands including the five small islets (red dots) 
used in this experiment. A picture of a male Podarcis erhardii, and an image of Agios Artemios, one of the introduction 
islands, are on the right.
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MATERIAL AND METHODS

The Cyclades island group (Aegean Sea, Greece) 
contains hundreds of islands ranging in size from 
large islands like Naxos (440 km2), to rocky islets 
measuring less than 0.1 km2 (Valakos et al., 2008). 
The islets of the Cyclades are arid, often with a rocky 
limestone substrate and little soil. Plant communities 
on these islets include Juniperus shrubs, small 
flowering forbs and grasses (Snogerup & Snogerup, 
1987; Panitsa et al., 2006). Many small islands are 
used by seabirds as nesting sites (Pafilis et al., 2013; 
Lymberakis et al., 2016). Podarcis erhardii, the Aegean 
wall lizard, is abundant throughout the Greek Islands 
(Fig. 1). It is moderately sized for the genus with adult 
snout-to-vent length (SVL) typically between 40 and 
75 mm (Valakos et al., 2008). Adults are sexually 
dimorphic, and they are largely generalist insectivores 
(Adamopoulou et al., 1999; Donihue, 2016b), although 
some populations supplement their diet with fruits 
and conspecific eggs (Brock et al., 2014).

During spring 2014, we identified several islets in the 
vicinity of the large islands of Naxos and Paros (Fig. 1) 
lacking Podarcis lizards and their primary predators: 
snakes and cats (Brock et al., 2014; Li et al., 2014). 
We selected five islets for this experiment due to their 
tractable small size (0.002–0.004 km2 surface area) and 
the availability of habitat and food that we predicted 
could support an introduced lizard population (Fig. 1). 
To seed the experimental islets, we captured 60 adult 
female and 40 adult male P. erhardii from a low-lying 
coastal area, Alyko, on the nearby island of Naxos 
(Donihue, 2016a). We measured lizard body size (SVL) 
and the length of each segment of the right fore and 
hind limb using calipers (Mitutoyo 500-752). Body mass 
was measured using a spring scale (Pesola Light-Line).

Bite forces were measured by inducing lizards 
to bite on a purpose-built bite force meter (Kistler 
9203, ±500 N connected to a Kistler 5995A charge 
amplifier) three times, the maximum force being 
retained for analyses (Herrel et al., 1999; Donihue 
et al., 2016). To assess locomotor performance lizards 
were chased along a track of 50 cm wide and 2 m 
long paved with large flagstones (see Donihue et al., 
2016a). Lizards were allowed to thermoregulate for 
30 min and immediately before running temperature 
was recorded using a cloacal thermometer (Miller and 
Webber T6000). Each trial was recorded with a video 
camera (Sony HDRPJ260V; 1920 × 1080 pixels; 50 Hz) 
suspended directly over the track. Lizard position was 
digitized frame by frame and velocity was calculated 
as described by Donihue et al. (2016a). The number of 
times the lizards jumped from rock to rock was also 
counted.

Each animal was individually marked using toe 
clips and released on a randomly assigned study islet. 

Each introduction island received a total of eight 
males and 12 females at the beginning of June 2014. 
We intentionally female-biased the introduction to 
increase the likelihood of recruitment and because 
male-biased sex ratios in lacertids can cause 
aggression against females, sometimes leading to 
population collapse (Le Galliard et al., 2005). In May 
2015 we revisited each of the five islands and caught 
all of the lizards until the capture rate decreased to 
one lizard per two person-hours. After measuring the 
lizards, they were re-released on the islets for future 
investigation.

StatiStical analySeS

All analyses were conducted in R 3.6.0 (R Core Team, 
2019). We first calculated body condition of the lizards 
using the scaled mass index (SMI) of Peig & Green 
(2009). The SMI has been demonstrated to better 
estimate body condition for small vertebrates than 
simple linear regression residuals (Peig & Green, 
2009), and this estimate has previously been used 
for selection studies on lizard body condition (Cox & 
Calsbeek, 2015).

Selection on the suite of morphological and 
performance traits measured on the introduction 
animals were assessed using a binomial generalized 
linear model (GLM) with survival (1/0) in 2015 as the 
response. Before analysis, all continuous morphological 
traits (e.g. head length, not sex) were scaled to have 
a mean of zero and unit variance using the ‘scale’ 
function in R (Becker et al., 1988). To assess whether 
each of the morphological traits measured predicted 
survival following colonization, we used a series of 
GLMs that incorporated body size (SVL) and the tested 
morphometric trait and we conducted a type III ANOVA 
on the factors to assess statistical significance. There 
were significant differences in survival between islands 
(P < 0.001) and marginally significant differences 
between sexes (P = 0.056); full model are given in 
the Results. We investigated incorporating nested 
random effects of sex within island but the models had 
insufficient power to evaluate the parameter space. 
We incorporated island identity as a random effect in 
the final models for analysis because the significant 
observed inter-island differences in survival were not a 
planned component of the experiment. We then tested 
whether sex significantly interacted with any of the 
potential explanatory variables – it did not – and so we 
removed sex from the analysis. We tested whether the 
performance traits predicted survival in the same way; 
however, in addition to incorporating differences in 
body size within the model, we also tested whether the 
performance traits alone – i.e. absolute performance 
as opposed to relative performance – predicted 
survival. We evaluated the models using the ‘glmer’ 
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function in the ‘lme4’ R package (Bates et al., 2015) 
and assessed the significance of the factors using the 
‘Anova’ function in the ‘car’ package (Fox & Weisberg, 
2019). As bite force typically varies between the sexes 
for many lizards, including P. erhardii (Donihue et al., 
2016), we separated the sexes and tested whether bite 
force residuals were a significant predictor of survival 
for either sex, again using island identity as a random 
effect in the GLM.

After identifying the suite of statistically significant 
predictors of survival, we then calculated linear 
selection coefficients for each factor. To do so, we 
used mean-standardized survival for each individual 
as the response in a single model that incorporated 
all of the significant factors so the coefficients could 
be interpreted relative to each other. Finally, we 
visualized selection surfaces using the ‘gam’ function 
in the ‘mgcv’ R package (Wood, 2011) using REML as 
the smoothing parameter estimation method.

RESULTS

While in 2014 each island was seeded with 20 lizards, 
in 2015 an average of only 11 lizards remained per 
island. The pattern of lizard survival between islands 
differed significantly (χ 2 = 21.858, d,f. = 4, P < 0.001). In 
subsequent analyses we pooled all 100 individuals and 
used island identity as a random effect in the analyses 
to account for unmeasured differences in the islands 
upon which lizards had been introduced.

We found that males had a slight survival advantage 
over females (χ 2 = 3.65, d.f. = 1, P = 0.056). In total, 37% 
of females and 58% of males survived to 2015. We also 
found that body condition (SMI) was a strong predictor 
of survival (χ 2 = 8.92, d.f. = 1, P = 0.003; Fig. 2B); lizards 
with higher body condition indices were more likely to 
survive. Contrary to our predictions, body size (SVL) 
was not a significant predictor of survival in the GLM 
(χ 2 = 2.85, d.f. = 1, P = 0.091; Fig. 2A).

Moreover, the distal portions of the fore and hind 
limbs significantly predicted survival (forelimb: 
χ 2 = 7.208, d.f. = 1, P = 0.007; hind limb: χ 2 = 5.226, 
d.f. = 1, P = 0.022; Fig. 2C, D). Thus, lizards with 
relatively longer ‘feet’ experienced a survival 
advantage (Table 1).

When we tested whether performance predicted 
survival in the experiment, only the number of jumps 
was a significant predictor of survival (Fig. 2E, F); 
lizards that jumped more from rock to rock in the 
sprint track were significantly more likely to survive 
(Table 2).

Finally, we found that residual bite force was 
not a good predictor of survival in either females or 
males (females: χ 2 = 0.273, d.f. = 1, P = 0.601; males: 
χ 2 = 0.854, d.f. = 1, P = 0.36; Fig. 3).

DISCUSSION

Over-water dispersal is an important eco-evolutionary 
process underlying biogeographical patterns of 
diversity. While such dispersal has led to stunning 
evolutionary divergence and convergence across 
islands, the arrival and establishment in a new 
environment can be fraught with challenges. We 
experimentally reproduced the arrival of a small 
population of Aegean wall lizards onto five small islets 
in the Greek Cyclades to document the early stages of 
this process. We found that, indeed, these small islets 
posed a significant challenge to lizards introduced 
there from a large island; nearly 50% of the introduced 
lizards did not survive to the next year. Those that did 
survive were the individuals with particularly good 
body condition, that had long distal limb segments 
and that showed a propensity for jumping. In contrast 
to our predictions, body size and bite force, in both 
absolute and relative terms, did not predict survival. 
Altogether, after arriving on small islets, these five 
populations experienced strong selection and the 
subset that survived is now adapting to very different 
ecological circumstances from those on Naxos island.

Body condition in animals is often considered a 
proxy for fitness: ‘fatter’ individuals with a higher 
body condition index are assumed to have underlying 
physiological advantages that would lead to higher 
reproductive success and/or survival (Jakob et al., 
1996; Cox & Calsbeek, 2015). For lizards, a higher 
body condition index may indicate an individual 
is better capable of surviving periodic fasts when 
food availability drops, and for females, better body 
condition may result in higher quality eggs. Despite 
the intuitive nature of this prediction, there is mixed 
evidence in the literature for positive selection on 
body condition. Examples exist in nature, for example 
among birds where better body condition predicts 
survival (Linden et al., 1992; Merilä et al., 2001), but 
counter examples with mixed or no evidence are just as 
prevalent (Hendry et al., 2003; Dibattista et al., 2007; 
Cox & Calsbeek, 2015) and may be underreported 
due to non-significant statistical publication biases 
(Kingsolver et al., 2001). The most comprehensive 
multi-year analysis of survival selection on body 
condition by Cox & Calsbeek (2015) found no 
consistent evidence for selection on body condition for 
Anolis sagrei individuals. In contrast, our results show 
a strong positive trend for ‘survival of the fattest’. 
This result, however, does not contradict that of Cox & 
Calsbeek (2015), but instead highlights the difference 
in experiments: Cox and Calsbeek investigated lizards 
in stable populations whereas we introduced lizards 
onto small islets; environments that were previously 
unknown to the lizards. Our experiment clearly shows 
the advantage of good body condition.
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Figure 2. The selection gradients of body size, body condition (scaled mass index), distal limb segments, bite force and 
jumping propensity. All of the traits, with the exception of body size and bite force, were significant positive predictors of 
survival. Tick marks above the x-axis reflect individuals in the experiment. Trend lines and dotted confidence intervals are 
estimated using the ‘gam’ function in the ‘mgcv’ R package – see Material and Methods.
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In many lizards, including those in the genus 
Podarcis, body size is a reliable proxy for competitive 
ability (Tokarz, 1985; Olsson, 1992; Pafilis et al., 
2009). We thus hypothesized that larger lizards would 
survive better on the introduction islands due to 
their ability to competitively exclude conspecifics for 
access to scarce resources on the islets. Additionally, 
our hypothesis was informed by previous surveys of 
P. erhardii populations that found adult lizards on 
small islands tend to be larger than lizards from big 
islands (Donihue et al., 2016; but see Itescu et al., 2018). 
In our experiment, we did not find evidence for this 
hypothesis: body size was not a significant predictor of 
survival and, if anything, smaller lizards experienced 
a slight advantage. As body size is a reliable proxy 
for age in animals with continuous growth, it is 
possible that the largest individuals perished in the 

year following introduction simply because of old age. 
Furthermore, younger individuals are probably more 
behaviourally flexible, presumably allowing them to 
flexibly adapt to a novel environment. Lastly, larger 
bodied lizards have greater absolute nutritional 
requirements. It is conceivable that they would be 
unable to acquire sufficient resources to support 
themselves on the islets. Neither of these explanations 
are entirely satisfying and go counter to the fact that 
males (the larger of the sexes) survived better than 
females. Ultimately, the discrepancy between our 
hypothesis, survey observation (Donihue et al., 2016) 
and result may simply be a matter of temporal scale: 
body size may become more relevant for competition 
and survival years and/or generations after an initial 
survival filter dictated by body condition is overcome.

While bite force is an important trait that 
determines a lizard’s competitive ability and capacity 
for consuming hard prey, it does not appear to have 
conferred a survival advantage in the initial year of 
this experiment. Contrary to our predictions, neither 
the absolute hardest biting nor the relatively hardest 
biting lizards experienced a survival advantage. One 
potential explanation is that the small number of 
lizards, relative to the size of the island, resulted in 
individuals dispersing sufficiently such that fights for 
space or food resources did not occur or that resources 
were sufficient. However, the latter is unlikely as 
roughly half of the lizards did not survive to the next 
spring. In contrast to bite force, jumping propensity 
provided a significant survival advantage. In line with 
this result, lizards with longer distal segments also 
survived better. Longer distal limb segments provide 
a performance advantage as they allow animals to 
continue to accelerate the centre of mass longer, thus 
achieving higher take-off velocities (James et al., 
2007) and resulting in an increase in jump height 
or distance. The distal limb segments weigh less 
than proximal segments and as such an elongation 
of distal segments does not increase the total mass 
of the animal as much allowing for greater jumping 
performance (Marsh, 1994). Thus, our results suggest 
that jumping performance was a key trait in allowing 
animals to survive the introduction onto these islands. 
Possibly, a better jumping capacity and a greater 
propensity to jump may have provided lizards with 
access to a unique food resource: flying prey. Indeed, 
although vegetation is limited on these islets, they do 
have flying insects visiting flowering plants or using 
the islands as stepping stones while crossing large 
distances over water. Yet, flying insects are notoriously 
hard to capture and possibly the greater jumping 
tendency and capacity may have provided a survival 
advantage to the lizards.

The five introduction islets used in this experiment 
are similar in island area, plant species composition 

Table 2. Performance predictors of survival with and 
without accounting for differences in body size (SVL)

Survival (1/0) ~ SVL 
+ trait

Survival (1/0) ~ trait

 χ 2 d.f. Pr(>χ 2) χ 2 d.f. Pr(>χ 2)

Bite force 0.727 1 0.394 0.185 1 0.667
Sprint 

speed 
over rock

0.284 1 0.594 0.090 1 0.764

Sprint 
speed 
over 
sand

0.016 1 0.899 0.000 1 0.988

Number of 
jumps

3.545 1 0.060 4.064 1 0.044

Table 1. Morphological predictors of survival

χ 2 d.f. Pr(>χ 2)

Survival (1/0) ~ trait     
Body size (SVL) 2.850 1 0.091  
Body condition (SMI) 8.917 1 0.003 **
Survival (1/0) ~ SVL + trait     
Head length 2.084 1 0.149  
Head width 3.175 1 0.075  
Head height 1.893 1 0.169  
Jaw length 2.555 1 0.110  
Humerus length 0.014 1 0.905  
Radius length 0.084 1 0.772  
Wrist to tip of longest finger 7.208 1 0.007 **
Femur length 3.790 1 0.052  
Tibia length 1.319 1 0.251  
Ankle to tip of longest toe 5.226 1 0.022 *
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and substrate, and are typical of the small islets found 
throughout the Greek Archipelago. Nonetheless, the 
responses of the survivors to selection across the five 
islands varied significantly. Whether that difference is 
due to ecological differences in the islets, differences in 
the randomly assigned individuals introduced to each 
island or a combination thereof cannot be confidently 
determined with this experimental design. The 
analytical methods for detecting selection are sensitive 
to outliers, particularly with low sample sizes (Lande 
& Arnold, 1983; Arnold & Wade, 1984). Therefore, the 
fate of individuals with extreme phenotypes may have 
had disproportionate effects on inter-island differences 
in selection. This is the first selection study of its kind 
investigating an experimental introduction of Podarcis, 
and much remains to be learned about the strength and 
consistency of selection on morphology, performance and 
body condition following introduction to small islets. 
Whether the traits that determined initial survival are 
important in driving the future evolutionary trajectories 
of these populations remains to be determined.
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