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1  | INTRODUC TION

Heritable interindividual phenotypic variation within a pop-
ulation is essential for adaptive evolutionary change (Botero, 
Weissing, Wright, & Rubenstein, 2015; Wagner & Wagner, 1996; 

West-Eberhard, 1989). Behavior is perhaps the most plastic phe-
notypic trait (see West-Eberhard, 2003), which is the main reason 
why biological and evolutionary significance of consistent interin-
dividual behavioral variation within populations (i.e., animal person-
ality) has been underappreciated for a long time (see Dall, Houston, 
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Abstract
Mechanisms affecting consistent interindividual behavioral variation (i.e., animal per-
sonality) are of wide scientific interest. In poikilotherms, ambient temperature is one 
of the most important environmental factors with a direct link to a variety of fitness-
related traits. Recent empirical evidence suggests that individual differences in bold-
ness are linked to behavioral thermoregulation strategy in heliothermic species, as 
individuals are regularly exposed to predators during basking. Here, we tested for 
links between behavioral thermoregulation strategy, boldness, and individual state in 
adult males of the high-mountain Carpetan rock lizard (Iberolacerta cyreni). Principal 
component analysis revealed the following latent links in our data: (i) a positive rela-
tionship of activity with relative limb length and color brightness (PC1, 23% variation 
explained), (ii) a negative relationship of thermoregulatory precision with parasite 
load and risk-taking (PC2, 20.98% variation explained), and (iii) a negative relationship 
between preferred body temperature and relative limb length (PC3, 19.23% variation 
explained). We conclude that differences in boldness and behavioral thermoregula-
tory strategy could be explained by both stable and labile state variables. The moder-
ate link between behavioral thermoregulatory strategy and risk-taking personality in 
our system is plausibly the result of differences in reproductive state of individuals or 
variation in ecological conditions during the breeding season.
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& McNamara, 2004; Gosling, 2001; Réale, Reader, Sol, McDougall, 
& Dingemanse, 2007; Sih, Bell, & Johnson, 2004; Sih, Bell, Johnson, 
& Ziemba, 2004). Nevertheless, studies targeting animal personal-
ity have become more common (for reviews and meta-analyses see 
Brommer & Class, 2017; Garamszegi, Markó, & Herczeg, 2013; Jandt 
et al., 2014; Sih et al., 2015; Smith & Blumstein, 2008; Webster & 
Ward, 2011). Related research revolves around the question of how 
consistent between-individual differences emerge against behavioral 
flexibility (see West-Eberhard, 2003). A large number of conceptual 
and empirical studies suggest that consistent between-individual 
behavioral differences are linked to differences in both inherently 
stable (e.g., size, sex differences, brain structure) and labile (e.g., 
energy reserves, health state, reproductive value) features of in-
dividual state (see DiRienzo, Niemelä, Hedrick, & Kortet, 2016; 
Horváth, Martín, López, Garamszegi, & Herczeg, 2017; Lichtenstein 
et al., 2016; Luttbeg & Sih, 2010; Mathot & Dall, 2013; Mathot, 
Dekinga, & Piersma, 2017; Urszán, Török, Hettyey, Garamszegi, & 
Herczeg, 2015).

In poikilotherms (i.e., animals whose internal temperature var-
ies considerably), body temperature influences virtually all biologi-
cal processes associated with fitness and behavior (Abram, Boivin, 
Moiroux, & Brodeur, 2017; Adolph & Porter, 1993; Angilletta, 2001; 
Huey & Bennett, 1987; Nylin & Gotthard, 1998). Most poikilo-
therms are capable of maintaining relatively high and constant 
body temperatures (Cowles & Bogert, 1944) by physiological and 
(mainly) behavioral adjustments (Angilletta, Cooper, Schuler, & 
Boyles, 2002; Herczeg, Gonda, Saarikivi, & Merilä, 2006; Herczeg 
et al., 2008; Huey & Slatkin, 1976; Stevenson, 1985; Van Damme 
& Bauwens, 1991). To attain and maintain given body temperature, 
it is important to maximize the efficiency of various physiological 
and behavioral processes. Thus, one would expect a strong direc-
tional selection toward lower interindividual variation in thermal 
preferences (the “goal” of thermoregulation), but empirical evidence 
suggests that selected body temperatures might consistently dif-
fer between individuals (Angilletta, Hill, & Robson, 2002; Goulet, 
Thompson, & Chapple, 2017; Stapley, 2006). Further, a growing 
number of empirical studies suggest a link between components 
of thermoregulatory strategy and behavioral consistency in poiki-
lotherms. Despite some results indicating a lack of a general pat-
tern of relationship between behavioral thermoregulatory strategy 
and personality traits (Artacho, Jouanneau, & Le Galliard, 2013; 
Cerqueira et al., 2016; Goulet, Ingley, Scharf, & Pruitt, 2016; Goulet, 
Thompson, & Chapple, 2017; Goulet, Thompson, Michelangeli, 
Wong, & Chapple, 2017; Herrel, James, & Van Damme, 2007; 
Michelangeli, Goulet, Kang, Wong, & Chapple, 2018; Rey, Digka, 
& MacKenzie, 2015; Stapley, 2006), lower behavioral predictabil-
ity (i.e., intraindividual behavioral variation, see Stamps, Briffa, & 
Biro, 2012) seems to be associated with high ambient temperatures 
(≈ body temperature) in various poikilotherm taxa (Briffa, Bridger, 
Biro, & a., 2013; Nakayama, Laskowski, Klefoth, & Arlinghaus, 2016; 
Velasque & Briffa, 2016).

Ecology of thermoregulation is well studied in reptiles (see Bajer, 
Molnár, Török, & Herczeg, 2012; Bauwens, Hertz, & Castilla, 1996; 

Berkel & Clusella-Trullas, 2018; Herczeg et al., 2004, 2006, 
2008; Mészáros, Herczeg, Bajer, Török, & Molnár, 2018; Rusch & 
Angilletta, 2016), especially in small- to medium-sized heliothermic 
lizards, whose body temperature is maintained by behavioral (tim-
ing of activity, microhabitat use, adopted posture) rather than by 
physiological adjustments (Angilletta, Cooper, et al., 2002; Bauwens 
et al., 1996; Huey & Slatkin, 1976; Van Damme & Bauwens, 1991). 
Differences in individual thermal preferences seem to play a key 
role for behavioral consistency in reptiles (Goulet, Thompson, 
Michelangeli, et al., 2017; Mell et al., 2016; Stapley, 2006; Waters, 
Bowers, & Burghardt, 2017). In addition, differences in time avail-
able for thermoregulation (irrespectively of body temperature) could 
affect behavioral consistency at different levels (Horváth, Mészáros, 
et al., 2017). As active behavioral thermoregulation has several costs 
in lizards (e.g., increased risk of predation; Huey & Slatkin, 1976), 
thermal preferences are particularly expected to be affected by 
boldness. Recently, Goulet, Thompson, and Chapple (2017) and 
Michelangeli et al. (2018) reported the existence of individual “ther-
mal types” in Delicate skinks (Lampropholis delicata), with individu-
als preferring higher body temperatures also showing higher scores 
of locomotor performance, activity, exploration, and risk-taking. 
Similar patterns were found in Namib rock agamas (Agama planiceps) 
(Carter, Goldizen, & Tromp, 2010), and Eastern box turtles (Terrapene 
carolina) (Kashon & Carlson, 2018). Since behavioral thermoregula-
tory strategy is expected to depend on the individual state (e.g., size, 
health), more studies are needed to seek links between thermoreg-
ulatory strategy, other personality traits, and physiological state of 
individuals.

Here, we aimed to test for associations between behavioral 
thermoregulatory strategy, boldness, and individual state in 
Carpetan rock lizards (Iberolacerta cyreni), a medium-sized lacertid 
endemic to mountain ranges in the center of the Iberian Peninsula. 
Species in the genus Iberolacerta are cold-adapted lizards living 
mainly in low thermal quality environments (Aguado & Braña, 2014; 
Carrascal, López, Martín, & Salvador, 1992; Jiménez-Robles & De 
la Riva, 2019; Monasterio, Salvador, Iraeta, & Díaz, 2009; Ortega, 
Federal, & Grosso, 2017; Ortega, Mencía, & Pérez-Mellado, 2017; 
Žagar, Carretero, Osojnik, Sillero, & Vrezec, 2015). Recent empir-
ical data on I. cyreni indicate the existence of animal personality 
in different behavioral traits, with short-term differences in state 
and environment potentially contributing to between-individual 
behavioral variation (Horváth et al., 2016; Horváth, Martín, et al., 
2017; Horváth, Mészáros, et al., 2017; López, Hawlena, Polo, Amo, 
& Martín, 2005). However, whether consistent individual differ-
ences are present in thermoregulatory strategy and whether these 
are linked to other personality traits in I. cyreni are virtually un-
known. Here, we studied the potential connections between ac-
tivity and risk-taking personality, preferred body temperature, 
thermoregulatory precision, and various fitness-linked state vari-
ables (body size, relative limb length, color, blood parasite load) 
applying seminatural and laboratory experiments. Previous empir-
ical results indicate that individuals with proactive personalities 
(i.e., more active and risk-prone) select higher body temperatures 
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(Cerqueira et al., 2016; Michelangeli et al., 2018; Stapley, 2006); 
thus, we expected that bolder individuals would have higher pre-
ferred body temperature and higher thermoregulatory precision 
(i.e., keeping body temperature within a narrow range). It is plausi-
ble that different state variables might either constrain or promote 
thermoregulatory precision, but because the direction of such re-
lationships is difficult to predict, and relevant empirical studies are 
scarce, we do not have explicit predictions.

2  | MATERIAL S AND METHODS

2.1 | Collection and housing

The study used 24 adult male lizards (Figure 1) whose behavior had 
previously been scored (Horváth et al., 2016). They were captured 
during early June 2013 at the slopes of “Alto del Telégrafo” (Sierra 
de Guadarrama National Park, Madrid Province, Spain, 1,900 m asl, 
approximately). Individuals were transported to the “El Ventorrillo” 
Field Station (1,500 m asl, approximately), 5 km downhill from the 
capture site, where they were housed individually outdoors in 
opaque plastic boxes (56.5 cm × 36.5 cm × 31.4 cm; length, width, 
height, respectively). In the boxes, we used a thin layer of coconut 
fiber as substrate and provided a hollow brick as shelter. Water 
and food (House crickets [Acheta domesticus] and Turkestan cock-
roaches [Blatta lateralis]) were provided ad libitum during captiv-
ity. All lizards were released at the original capture site after the 
experiments.

2.2 | Individual traits

Upon capture, we measured morphological and color traits, and 
took blood from each individual to quantify the intensity of blood 
parasite infection. Snout–vent length (hereafter SVL; 65.52 ± 3.2; 
mean ± SD) and length of the hind limbs were measured using a 
digital calliper to the nearest 0.01 mm. Hind limb length was char-
acterized by measuring the left and right femurs and tibias, and then 
summing the mean femur (10.35 ± 0.5; mean ± SD) and tibia lengths 
(10.66 ± 0.4; mean ± SD) for every individual. In the analyses (see 
below), we used residuals from the hind limb length–SVL regression 
to describe relative hind limb length (hereafter limb length).

We used 25-G insulin syringes to take blood from a large sub-
cutaneous vessel on the ventral side of each individual. Blood was 
collected using 60 µl hematocrit capillary tubes, and blood smears 
were made by blowing a drop of blood onto a microscope slide. 
Smears were air-dried until coagulation, then fixed with methanol 
and stained. For a detailed description of the process, see Molnár, 
Bajer, Mészáros, Török, and Herczeg (2013). Data on Karyolysus and 
Schellackia infection intensity (hereafter parasite load; 18 ± 25.87; 
mean ± SD) were quantified under the microscope at x1000 magnifi-
cation and normalized using log10 transformation. Only one individ-
ual was found uninfected (retained in the analyses); hence, parasite 
prevalence was 0.95.

Reflectance was measured on the animals’ green-colored dor-
sal scales using a spectrometer (USB2000 Ocean Optics, Dunedin, 
FL, USA) with a deuterium-halogen light source (DT-MINI-2GS, 
OceanOptics). Three different measures were taken from random 
spots between the 300–700 nm wavelength range. We took the av-
erage of every 5 nm; then, we calculated the average of the three 
measurements. A principal component analysis (PCA) was run on the 
spectrum data to gather new variables describing dorsal coloration 
(see Cuthill, Bennett, Partridge, & Maier, 1999; Grill & Rush, 2000; 
Kopena, López, & Martín, 2014). Based on Kaiser–Guttmann cri-
terion, principal components (PCs) with eigenvalue greater than 1 
were retained (Tabachnick & Fidell, 2014). As a result, we obtained 
a single PC describing the total achromatic brightness of the dor-
sal scales (hereafter dorsal brightness; proportion of variation ex-
plained = 88.41%; factor loadings > 0.982; see Table S1).

2.3 | Behavioral assays

Methodology of behavioral assays is described in detail in Horváth 
et al. (2016). Briefly, activity and risk-taking of each individual were 
tested 5 and 6 times (respectively) over a 13-day period between 13 
and 25 June 2013 on alternating days (an activity assay was skipped 
on 19 June because of thick cloud cover and light rain). Activity was 
measured in the animals’ home cages by analyzing video recordings 
and was represented by total distance moved during three 10-min 
time slots in each trial. Risk-taking was measured on every second 
day in unfamiliar arenas (36.5 cm × 22.4 cm × 25 cm; length, width, 
height, respectively). First, animals were handled by the experimenter 

F I G U R E  1   Adult male Carpetane rock lizard (Iberolacerta cyreni). 
Photograph by Octavio Jiménez-Robles
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and placed into a smaller “starter box” (11.2 cm × 7.3 cm × 5.4 cm; 
length, width, height, respectively). Then, after a 5-min acclimation 
period, the door of the starter box was opened and the latency time 
to emerge was recorded for 10 min. Out of 120 assays, individu-
als did not leave the refuge in 16 cases (13.3% of all assays). These 
observations received maximum score. Both activity and risk-taking 
behaviors were found repeatable (activity: r = 0.69, 95% confidence 
interval [CI] =0.51 – 0.8; risk-taking: r = 0.22, 95% CI = 0.11–0.41), 
indicating the presence of animal personality (Horváth et al., 2016). 
However, there was no significant between-individual correlation 
between the behaviors (Horváth et al., 2016), indicating the lack of 
a “true” behavioral syndrome (see Dingemanse, Dochtermann, & 
Wright, 2010; Herczeg & Garamszegi, 2012). Hence, both activity 
and risk-taking can be seen as independent traits with clear between-
individual differences. Here, we used the individual means to de-
scribe individual behavioral type (hereafter activity and risk-taking).

2.4 | Thermoregulatory strategy

After the behavioral tests, on 27 and 29 June, we measured ther-
mal preferences of the study individuals (using the same setup as in 
Jiménez-Robles & De la Riva, 2019). We intended to measure vol-
untary thermal preference in an ecological cost-free environment 
(Hertz, Huey, & Stevenson, 1993), where the only varying environ-
mental factor is the temperature gradient. Hence, experiments were 
run in a simplified, special enclosure under controlled conditions to 
minimize confounding factors (e.g., differences in solar radiation 
and wind, uncontrolled background temperature, heterogeneity 
of substrates and their thermal properties, etc). We built 12 tracks 
(100 cm × 16.5 cm × 45 cm; length, width, height, respectively) using 
smoothened particle board, following a similar laboratory setup as in 
Paranjpe et al. (2014). With an incandescent light bulb (100 W) over 
one end of the track and aluminum foil covering the surfaces of walls 
and top of each bulb, we created a temperature gradient from more 
than 50°C to <25°C. Thermal ecophysiology in poikilotherms is 
typically framed around the concept of core body temperatures (in-
tracloacal in lizards), a thermocouple (0.076 mm diameter, 40 AWG 
gauge; Omega 5SC-TT-T-40-36) with nail polish-coated tip (1 mm ap-
proximately of final diameter), was inserted 1 cm deep into the clo-
aca and taped around the tail base of lizards (Aguado & Braña, 2014; 
Gvoždík, Castilla, & Gvozdik, 2001; Herrando-Pérez et al., 2019). 
We placed one lizard in one track. Each thermocouple was con-
nected to a multichannel data logger (Eltek Squirrel 1035, Eltek Ltd., 
Cambridge, UK) to record body temperatures once per minute for 
~2 hr. We discarded the first measures until the lizards could reach 
the first maximum in their sine-like thermoregulatory pattern. We 
also discarded measures when the thermocouples got outside the 
cloaca or when the lizards entangled in the wire without possibil-
ity to move freely (Aguado and Braña, 2016; Jiménez-Robles & De 
la Riva, 2019). In spite of potential stress effects, intracloacal ther-
mocouples provide the most accurate method for thermoregulatory 
measures for lizards (Garcia-Porta et al., 2019; Sinervo et al., 2010). 

Nevertheless, as the setup was the same for all the lizards, observed 
differences in the experiment should reflect differences in personal-
ity of thermoregulation.

2.5 | Statistical analyses

We calculated the median of selected body temperatures (Tsel); the 
voluntary thermal maximum (TVmax), defined as the highest body 
temperature, reached during the experiment, as a measure of how 
much every individual dares to approach potentially deleterious high 
temperatures, which are usually slightly above the optimum temper-
ature; and the width of the setpoint range (Tset) defined as the central 
50% of recorded body temperatures as a measure of the precision of 
thermoregulatory strategy. We note that applying mean and stand-
ard deviation of selected body temperatures as alternative indices of 
thermoregulatory strategy did not change our results qualitatively. 
Hence, apart from the TVmax, we chose to stick with Tsel and Tset, 
as these are more frequently used measures of thermal biology in 
reptiles. We note that the thermal measurements failed in three indi-
viduals and data inspection revealed two additional individuals being 
extreme outliers (one in selected temperature and one in body size); 
hence, we excluded these individuals from the analyses.

We should note here that due to laboratory setup capacity, indi-
viduals were measured at different time of day during two different 
days. In order to test whether these differences affected selected 
temperatures, we ran a general linear mixed model (LMM) with re-
corded body temperatures as response variable, different dates and 
time of day and their interaction as fixed effects, and individual iden-
tity as a random factor. We applied backward stepwise model selec-
tion of all effects of the LMM using the step function available via the 
lme4 and lmerTest packages (Bates, Mächler, Bolker, & Walker, 2015; 
Kuznetsova, Brockhoff, & Christensen, 2016). The significance of 
the fixed effects was estimated based on Satterthwaite approxima-
tion, while likelihood-ratio test was used for the random effects.

Our main goal was to look for relationships among personality 
traits (activity, risk-taking), traits describing individual thermoregu-
latory strategy (Tsel, TVmax, Tset) and traits describing individual state 
(SVL, relative limb length, parasite load, dorsal brightness). In this 
framework, there are no predictor or response variables. Hence, we 
applied a PCA to find the “simple structure” behind the variables or, 
in other words, to find the latent relationships in the data. In this ap-
proach, the best original variable—PC correlations—is the achievable 
goal, which can be reached by rotation techniques. Further, unlike 
in cases where PCA is used for reducing the number of original vari-
ables by collapsing them into independent PCs, here the indepen-
dence of the PCs is not necessary, because the best simple structure 
might be found with correlated PCs. Therefore, we used the follow-
ing strategy. First, we ran our PCA with an oblique rotation (promax) 
allowing correlations among PCs. Since the correlation coefficients 
were relatively low (r < |0.2|), we reran the PCA with an orthogo-
nal rotation (varimax) resulting in independent PCs. We note that 
the loading structure of the two PCAs was qualitatively similar and 
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we report the solution after varimax rotation (Robinson et al., 2018; 
Schuett & Dall, 2010; Tab achnick & Fidell, 2014). Bartlett tests 
were significant, indicating that the correlation matrices were sig-
nificantly different from the identity matrices. Anti-image correla-
tions were mostly low (see Table S2). PCs with an eigenvalue greater 
than 1 were retained, based on Kaiser–Guttmann criterion. This ini-
tial approach resulted in four PCs, the fourth PC having less than 
three variables loading on it. Since PCs with less than three original 
variables loading on them are unreliable and should be discarded 
(Tabachnick & Fidell, 2014), we reran the analysis and extracted the 
first three PCs only. For interpreting factor loadings, following the 
suggestions of Comrey and Lee (2009), Tabachnick and Fidell (2014) 
recommended a loading above 0.71 (50% overlapping variance) to 
be considered excellent, 0.63 (40% overlapping variance) very good, 
0.55 (30% overlapping variance) good, 0.45 (20% overlapping vari-
ance) fair, 0.32 (10% overlapping variance) poor, and anything below 
0.32 uninterpretable. However, due to our relatively low sample size, 
we only interpreted loadings above 0.45. All data analysis was con-
ducted in R version 3.6.2 (R Developmental Core Team, 2019).

3  | RESULTS

Our LMM revealed significant differences in selected body tempera-
tures among individuals (χ2 = 358.19, df = 1, p < .001; Figure 2), in-
dicating individually variable thermoregulatory strategy. However, 
results indicated no significant effect of time of day or date (time 
of day: F2,19.01 = 0.3, p = .74; date: F1,19 = 1.89, p = .19; time of 
day × date: F1,19 = 0.06, p = .80). Our PCA resulted in three PCs 
explaining 63.21% of total variation (Table 1). PC1 explained 23% of 
the total variation and had excellent positive loadings from activity 
(0.85) and dorsal brightness (0.91) and a good positive loading from 

relative hind limb length (0.66) (Figure 3). This indicates a gradient 
from inactive, short-legged, and dull-colored males toward active, 
long-legged, and brightly colored males. PC2 explained 20.98% of 
total variation and had an excellent positive loading from Tset (0.77) 
(note that it is a variable describing precision; hence, low values 
mean high precision), a very good positive loading from parasite load 
(0.73), and a good negative loading from risk-taking (−0.63) (note that 
risk-taking is a latency variable; hence, low values mean high risk-
taking) (Figure 3). This indicates a gradient from lowly parasitised 
precise thermoregulators with low risk-taking toward highly para-
sitized imprecise thermoregulators with high risk-taking. PC3 ex-
plained 19.23% of total variation and had a good positive loading 
from Tsel (0.67), an excellent positive loading from Tmax (0.81), and 
a fair negative loading from SVL (−0.52), indicating a gradient from 
large males with low preferred body temperature to small males with 
high preferred body temperature (Figure 3).

4  | DISCUSSION

In the present paper, in line with accumulating empirical research in 
various poikilotherm taxa (Cerqueira et al., 2016; Goulet, Thompson, 
& Chapple, 2017; Rey et al., 2015; Stapley, 2006), we show that there 
is a link between risk-taking personality and thermoregulatory strat-
egy in adult males of I. cyreni. However, the link between risk-taking 
personality and behavioral thermoregulatory strategy is only mod-
erate, while totally absent regarding activity, in our model system. 
It has been suggested that linkage between behavior and various 
aspects of individual physiology is complex and affected by biotic 
and abiotic factors (Careau et al., 2015; Killen, Marras, Metcalfe, 
McKenzie, & Domenici, 2013; Le Galliard, Paquet, Cisel, & Montes-
Poloni, 2013), and thus, we can only speculate about the biological 

F I G U R E  2   Individual differences in 
selected body temperatures of adult male 
Iberolacerta cyreni. Median of selected 
body temperatures (represented as 
dots) with setpoint range (central 50%) 
and voluntary maximum temperatures 
(represented as triangles) are shown
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background behind the patterns presented here. Previous results 
on I. cyreni (Horváth, Martín, et al., 2017; Horváth, Rodríguez-Ruiz, 
Martín, López, & Herczeg, 2019) and passerines (see Dingemanse, 
Both, Drent, & Tinbergen, 2004; Garamszegi et al., 2015) indicate 
that drastic changes in behavioral strategy could occur not just be-
tween years, but also among seasons within the same year. Thus, 
given that our study was conducted on adult males of I. cyreni dur-
ing the seasonally limited breeding period, we cannot exclude the 

possibility that the moderate association between risk-taking per-
sonality and behavioral thermoregulatory strategy was the outcome 
of the different reproductive state (e.g., variation in plasma testos-
terone levels; see Martín & López, 2010) of the studied individuals, 
or the ecological conditions during this time of year. In any case, ad-
ditional, long-term research involving female specimens and meas-
ures in other seasons are needed to verify the true nature of this 
link in I. cyreni.

Both activity and risk-taking personality and behavioral thermo-
regulatory strategy are associated with various state-linked traits. 
Links between coloration and personality have been reported in birds 
and reptiles several times (Ibáñez, Pellitteri-Rosa, Sacchi, López, & 
Martín, 2016; Mafli, Wakamatsu, & Roulin, 2011; Mateos-González 
and Senar, 2012; Williams, King, & Mettke-Hofmann, 2012). In our 
study, males with brighter dorsal coloration and relatively longer 
hind limbs were more active. In many lacertid lizards, brightness is 
considered to be an honest signal because the expression of brighter 
coloration has physiological costs that only males of higher quality 
(i.e., higher trait value in potentially fitness-linked traits; see Wilson 
& Nussey, 2010) and condition can afford (Bajer, Molnár, Török, & 
Herczeg, 2010; Kopena et al., 2014; Lisboa, Bajer, Pessoa, Huber, & 
Costa, 2017; San-José and Fitze, 2013). Although the exact informa-
tion content of color signals in I. cyreni is not entirely known (Cabido, 
Galán, López, & Martín, 2009; López, Martín, & Cuadrado, 2004), the 
species is polygynandric—older, territorial males express turquoise 
coloration and are preferred by females (Aragón, López, & Martín, 
2004; Martín & López, 2013). Also, males with highly saturated 
green dorsal coloration have higher reproductive success (Salvador, 
Diaz, Veiga, Bloor, & Brown, 2008). Limb length, in addition, was 
shown to be strongly correlated with sprint speed (i.e., locomotor 
performance; Bauwens, Garland, Castilla, & Van Damme, 1995; 
Vanhooydonck, Van Damme, & Aerts, 2001), which is an important 
component of life-history trade-offs and a suitable proxy for indi-
vidual quality (Garland, 1984; Husak, Ferguson, & Lovern, 2016; 

TA B L E  1   Factor loadings of principal component analysis ran on 
thermal- and individual state-related traits

PC1 PC2 PC3

Activity 0.85a  0.32 −0.14

Risk-taking −0.19 −0.63c  0.37

Tsel −0.18 −0.14 0.67 c 

Tset −0.09 0.77 a  0.34

Tmax 0.18 0.4 0.81 a 

SVL −0.06 0.2 −0.52a 

Relative hind limb 
length

0.66 c  0.02 0.14

Blood parasite 
infection

−0.002 0.73b  −0.22

Dorsal brightness 0.91 a  −0.22 −0.09

% of variance 
explained

23 20.98 19.23

Total variance 
explained

63.21

Note: Traits with a loading ≥ 0.45 were considered to contribute to a 
PC. Tsel = median of selected body temperatures; Tset = set point range; 
Tmax = thermal voluntary maximum; SVL = snout–vent length.
aExcellent. 
bVery good. 
cGood. 
dFair; according to Tabachnick and Fidell (2014). 

F I G U R E  3   Principal component analysis biplots in rotated space for the 19 individuals (represented as dots). Filled circles represent 
individual scores and arrows represent factor loadings for original variables in each one of the PCs. Individual scores were divided by 2 for 
visualizing purposes. Act = activity; Risk-t = risk-taking; Tsel = median of selected body temperatures; Tset = set point range; Tmax = thermal 
voluntary maximum; SVL = snout–vent length, Limb = relative hind limb length; Parasite = blood parasite infection; Bright = dorsal 
brightness
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Irschick, Meyers, Husak, & Le Galliard, 2008; Le Galliard, Clobert, & 
Ferrière, 2004; Winchell, Maayan, Fredette, & Revell, 2018). Hence, 
males with brighter coloration and longer hind legs could be seen 
as more attractive, higher-state individuals. Being more active may 
allow these males to gain access to territories with abundant re-
sources, while they are most likely protected from predators due to 
their state (i.e., increased sprint speed). Hence, our results poten-
tially reflect some form of state-dependent safety, where individuals 
with higher state are expected to have high behavioral activity for 
their benefit, because their high state allows them to deal with the 
increased risk (Luttbeg & Sih, 2010).

Males with high blood parasite infection rate were shown to 
be imprecise thermoregulators and more risk-prone than healthier 
conspecifics. Similarly to previous results (Horváth et al., 2016), this 
pattern is in line with the asset protection principle (see Clark, 1994), 
which predicts individuals with low reproductive value to be risk-
prone. Karyolysus and Schellackia (family Karyolysidae, formerly 
Haemogregarinidae, suborder Adeleorina, subclass Coccidiasina, 
phylum Apicomplexa) are intracellular protozoans infecting I. 
cyreni and other reptiles as intermediate hosts (Amo, López, & 
Martín, 2005; Bouma, Smallridge, Bull, & Komdeur, 2007; Caudell, 
Whittier, & Conover, 2002; Garrido, Pérez-Mellado, & Cooper, 2014; 
Sagonas, Rota, Tsitsilonis, Pafilis, & Valakos, 2016; Smith, Desser, & 
Martin, 1994; Veiga, Salvador, Merino, & Puerta, 1998). Although in-
fection by Karyolysidae usually does not affect the host's survival 
directly (Megía-Palma et al. 2018), blood parasite load in I. cyreni 
has a negative effect on body condition during the mating season 
(Amo et al., 2004). A similar negative association between infec-
tion rate and thermoregulatory precision was reported by Paranjpe 
et al. (2014) in side-blotched lizards (Uta stansburiana) infected by 
malaria (Plasmodium mexicanum). However, considering the correl-
ative nature of our study, there are several alternative mechanisms 
explaining the pattern found here. As I. cyreni lives in a low thermal 
quality environment with considerable daily fluctuation in ambi-
ent temperature (Aguado & Braña, 2014; Jiménez-Robles & De la 
Riva, 2019; Monasterio et al., 2009), high thermoregulatory precision 
is expected. However, maintaining high precision has considerable 
energy and time commitments (Bowker, 1984; Paranjpe et al., 2014; 
Sartorius, do Amaral, Durtsche, Deen, & Lutterschmidt, 2002); 
thus, it is somewhat plausible that the decrease of thermoregu-
latory precision is the result of the energetic constraints of the 
blood parasite infection. Parasitic manipulation of thermoregula-
tory behavior of the hosts is another possible option (see Lafferty 
& Shaw, 2013; Poulin, 2013). However, there is no information in 
the literature that Karyolysidae are capable to actively alter the be-
havior of its hosts. Intuitively, infection should increase both body 
temperature and thermoregulatory precision of the host (Karsten, 
Ferguson, Chen, & Holick, 2009; Scholnick, Manivanh, Savenkova, 
Bates, & McAlexander, 2010), but lizards might choose to maintain 
lower thermoregulatory precision in order to reduce the develop-
ment of parasites and the physiological costs of infection (Paranjpe 
et al., 2014).

Larger males preferred lower temperatures than smaller con-
specifics. As reptile growth is indeterminate, these males are prob-
ably older than their smaller conspecifics (Kozlowski, 1996; Shine 
& Charnov, 1992). Active thermoregulation is often interpreted to 
be costly for small heliothermic lizards, mainly because they are 
exposed to predators during basking (Herczeg et al., 2008); thus, 
optimization of basking and selection of basking sites have utmost 
importance, especially in high-mountain habitats, where time for 
attaining appropriate body temperatures is limited (Jiménez-Robles 
& De la Riva, 2019; Martín & Salvador, 1993). For example, previ-
ous studies indicate that I. cyreni usually choose to bask closer to 
their shelters (e.g., rock crevices; Carrascal et al., 1992; Martín & 
Salvador, 1997). As small individuals might be less conspicuous to 
predators than larger ones (Baxter-Gilbert & Riley, 2018; Martín & 
López, 2003), they are able to follow a basking strategy resulting 
in higher body temperatures than larger conspecifics. Previous re-
sults in the European adder, Vipera berus, suggest that age groups 
more vulnerable to predation have lower preferred body tempera-
tures, possibly as a result of predator avoidance (Herczeg, Gonda, 
et al., 2007). Alternatively, as smaller individuals have lower body 
mass and higher surface-to-volume ratio, they absorb heat faster 
and can reach high body temperatures within shorter time (Carrascal 
et al., 1992; Herczeg, Török, & Korsós, 2007; Martín & López, 2003).

Taken together, we found a moderate link between risk-taking 
personality and behavioral thermoregulatory strategy in adult male 
I. cyreni, which might be the outcome of reproductive state of the in-
dividuals or ecological conditions during the breeding season. Thus, 
we suggest that future manipulative experiments should also involve 
female lizards and consider other seasons for a better understanding 
of the link between these behavioral traits. We found various con-
nections between activity and risk-taking personality and individual 
state or between behavioral thermoregulatory strategy and individ-
ual state, supporting the state-dependence of both. We conclude 
that even though there is a relationship between interindividual 
variation in risk-taking personality and behavioral thermoregulatory 
strategy in this lizard species, behavioral variation is primarily af-
fected by individual state.
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