AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by FORDHAM UNIVERSITY

Bioactive Constituents, Metabolites, and Functions

The Metabolism Distribution and Effect of Thiamethoxam After Oral Exposure in Mongolian racerunner (Eremias argus)

Yinghuan Wang, Yang Zhang, Peng Xu, Baoyuan Guo, and Wei Li

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.8b02102 • Publication Date (Web): 20 Jun 2018

Downloaded from http://pubs.acs.org on June 29, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

The Metabolism Distribution and Effect of Thiamethoxam After Oral Exposure in Mongolian racerunner (*Eremias argus*)

Yinghuan Wang^{1*}, Yang Zhang², Peng Xu¹, Baoyuan Guo¹, Wei Li¹

1 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,

18 Shuangqing Road, Haidian District, Beijing, 100085, PR China.

2 Benxi institute for Drug Control, No.31 Shengli Road, Mingshan District, Benxi

117000, PR China

* Corresponding author: Tel: +86-01-62849385 Fax: +86-01-62849790 E-mail addresses: yhwang@rcees.ac.cn

1	ABSTRACT : Systematically evaluation of the metabolism, distribution and effect of
2	thiamethoxam in mongolian racerunner (Eremias argus) were carried out after oral
3	exposure. The HPLC equipped with Q Exactive focus was used for identification and
4	concentration analysis of thiamethoxam and its metabolites. Percutaneous and urine
5	excretions were the primary ways for the elimination of thiamethoxam and its
6	metabolites, and the limiting factor was urine output. Demethylation thiamethoxam
7	and clothianidin were the main metabolites of thiamethoxam in lizard. The CYP3A4,
8	CYP3A7 and CYP2C9 played a crucial role in the metabolism process. Aldehyde
9	oxidase only dominated the nitro-reduction process of demethylation thiamethoxam
10	and clothianidin. Glutathione S-transferase might be related to the clearance process
11	of thiamethoxam and its metabolites. The findings indicated that thiamethoxam might
12	pose potential carcinogenic and hepatic injury risk to lizards. The results enrich and
13	supplement the knowledge of the environmental fate of thiamethoxam in reptiles.
14	Key words: Eremias argus, Thiamethoxam, Metabolism, Distribution
15	

16 **INTRODUCTION**

17	Because of the excellent properties of low application rate, broad spectrum, high
18	efficiency, and quick absorption and translocation in plants, neonicotinoids have
19	become the fastest growing insecticides in the world ¹⁻³ . Compared to mammals,
20	neonicotinoids show a higher degree of specificity for insect nicotinic acetylcholine
21	receptors (nACRs) and are therefore considered to be an environmentally friendly
22	insecticide ^{4,5} . Thiamethoxam (CAS name:
23	tetrahydro-3-methyl-N-nitro-4H-1,3,5-oxadiazin-4-imine, TMX) contains a
24	2-chloro-5-(chloromethyl)- thiazole (Figure 1), which exhibits high insecticidal
25	contact, stomach and systemic activity ^{6,7} . TMX is widely used to prevent and control
26	commercially important pest insects, such as aphids, whiteflies, thrips, golden needles,
27	leaf miners and some Lepidoptera and Coleoptera species ^{8,9} . As a common seed
28	coating insecticide, TMX is recommended to provide continuous protection from
29	insect herbivory throughout the entire growing season ^{10,11} . However, only 2-20% of
30	the pesticide is absorbed by the target crop and the rest is left in the soil
31	environment ¹² . TMX could persist in the soil with the half-life exceeding $350d^{13}$.
32	Unreasonable and repeated use of TMX results in residues in soil and other
33	environmental media ^{14,15} , which might pose potential risks to organisms in the soil as
34	well as higher animals.

35

36 Although neonicotinoids are considered highly selective for insect nAChRs, the

37	N-desnitro and descyano metabolites of neonicotinoids might be more toxic to
38	mammalian nAChRs than that of insects ¹⁶⁻¹⁸ . The metabolites of TMX may have
39	greater environmental risks than TMX. For example, TMX is considered to be one of
40	the major neonicotinoid pesticides that may cause a significant decline in bee
41	populations ^{13,19} , and its metabolite clothianidin (CLO) might aggravate this toxic
42	effect ^{20,21} . The demethylated metabolite of TMX had been shown to have
43	carcinogenic effects in mice ²² . The metabolite of TMX is one of the important factors
44	causing the toxic effect of TMX. Therefore it is crucial to understand the metabolic
45	process of TMX and the form of metabolites in vivo to further assess their
46	toxicological risk. The studies of the metabolism of TMX were mainly concentrated
47	in mammals, such as mice, rats and rabbits ²²⁻²⁴ . However, the metabolism and
48	distribution of TMX in reptiles has rarely been reported.

49

As an anthropogenic pollutant, pesticides are considered to be an important cause of 50 population decline in reptiles 25,26 . Inhalation, food intake, and skin penetration are the 51 primary routes for reptiles exposed to pesticides directly²⁷. As an important animal in 52 agro-ecosystem²⁸, soil-living habits and regular swallowing of soil²⁹ make lizards 53 54 exposed to pesticides at great risks. Because of the repeated use and long persistence 55 in soil, TMX could be transferred into cultivated soil in large amounts, which 56 threatens lizards living in farmland soil. Although the metabolic behavior of TMX in mammals has been reported, the metabolism of exogenous substances in living 57

organisms is species-dependent due to the subtle differences in the structure of metabolic enzymes between species. To our knowledge, as a species exposed directly to soil pesticide residues, lizards have rarely been used as experimental animal in the metabolic studies of TMX.

62

To complement this research area, Chinese lizards (*Eremias argus*) were used to evaluate the metabolism, distribution and effect of TMX on reptiles in this study. *E. argus* is a kind of small species commonly found in the north of the Yangtze River. It is widely distributed in China's important agricultural areas such as the North China Plain and Northeast China Region^{30,31}. In these areas, the widespread use of pesticides has become a direct threat to the survival of lizards.

69

70 To better describe the actual environmental behavior and ecological risks of TMX in 71 lizards from a comprehensive perspective, this study was performed to obtain the 72 biological fate of TMX in lizard blood and to evaluate the metabolism and 73 distribution of TMX and its metabolites in various tissues. The changes in the mRNA 74 expressions of the metabolic enzymes in liver, kidney, and brain were used to identify 75 enzymes that play a major role in TMX metabolism which were verified by 76 subsequent enzyme inhibitor experiments. This study obtained basic data on the 77 metabolism, distribution, and effects of TMX in lizards, and provided research 78 guidance for the subsequent toxic effects of TMX and its metabolites in reptiles.

80 MATERIALS AND METHODS

81 Reagents

- 82 Thiamethoxam (TMX, 98.2% purity) and clothianidin (CLO, 99.0% purity) were
- 83 provided by Institute for the Control of Agrochemicals, Ministry of Agriculture. All
- 84 solvents of methanol, ethanol, acetone, acetonitrile, n-hexane, and isopropanol were
- 85 HPLC grade and purchased from Dikma (Beijing, China). Nootkatone,
- 86 sulfaphenazolum, quinidine, omeprazole, 2,4-Dinitrochlorobenzene, ketoconazole and
- 87 estrogen (analytical grade) were purchase from Sigma-Aldrich (Beijing, China).

88

89 Animals and husbandry

- 90 The sexually mature *E. argus* (3-3.5 g) were collected from our breeding colony in
- 91 Changping district, Beijing, China. Lizards were reared in $5 \times 1.2 \times 0.4$ m solid
- 92 bottom indoor aquarium covered with 10 cm fallen leaves and mollisol. The
- temperature and humidity were kept at 25-30 °C and 30-60%, respectively. Daylight
- lamps (100 W) were set to a 14:10-h light: dark photoperiod to provide enough light
- 95 and maintain the setting temperature. Lizards were fed with mealworms (Tenebrio
- 96 *molitor*) twice a day. The water was sprayed every other day and the excreta and
- 97 residues were cleaned twice a week.

99	Animal welfare and experimental procedures were carried out in accordance with the
100	Guide for the Care and Use of Laboratory Animals (Ministry of Science and
101	Technology of China, 2006). The animal care and use procedures were approved by
102	Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
103	
104	Exposure experiment and sampling
105	TMX was first dissolved in the ethanol then dispersed in corn oil. The content of
106	ethanol should be less than 10%. The testing dose was 20mg/kg^{-bw} . The corn
107	oil-ethanol lactescence were continually mixed on the magnetic stirring apparatus
108	before dosing. The microinjector was used to deliver a volume of 15-30 μ L corn oil or
109	corn oil-ethanol lactescence into the oral cavity of each lizard according to the body
110	weight.
111	
112	After oral administration, lizards were euthanized at 1, 3, 6, 10, 12, 16 and 24h. Three
113	lizards were selected randomly at each sampling point. The blood, brain, heart, lungs,
114	stomach, intestine, liver, kidney, skin, fat and gonad of each lizard were collected for
115	concentration analysis of TMX and its metabolites. The brain, kidney and liver were
116	collected, weighed, and frozen at -80 $^{\circ}$ C with RNA store at 12 and 24h. The dosing
117	lizards were housed in 30 \times 30 \times 20 cm glass cage with a water dish. The experimental
118	conditions were the same as the rearing condition. A diet for one lizard was consisted
119	of two mealworms per day.

121 Chromatographic separation and concentration analysis

122	The blood	l and tissue	samples v	vere used for	concentration a	analysis of	TMX and its

123 metabolites. Whole blood (50µL) was transferred to a 2-mL polypropylene centrifuge

tube and 2 mL acetonitrile was added. Tissue homogenization matrices (0.05-0.1 g)

- were transferred into a 10mL polypropylene centrifuge tube and 10 mL acetonitrile
- 126 was added. The mixture was mixed and vortexed for 3 min, exposed to ultrasonic
- 127 vibration for 20 min, then centrifuged at 10,000 r/min for 5 min. The supernatants
- 128 were collected. The sample was re-extracted in the same manner and the supernatants
- 129 were combined. The supernatants were evaporated to near dryness at 30 °C using a
- 130 vacuum rotary evaporator and dried under a gentle stream of nitrogen. The residue
- 131 was re-dissolved in 1 mL of acetonitrile and passed through a 0.22µm filter (Nylon 66)
- 132 into a sample vial for HPLC-QE analysis.

133

- 134 The TMX and its metabolites were separated by HPLC (Ultimate 3000, Thermo
- 135 Scientific, USA) equipped with Acquity HSS T3 column (Waters, 2.1mm id ×10 cm
- long). The mobile phase was a mixture of 80% acetanitrile and 20% water with a flow
- 137 rate of 0.25 mL/min. The column temperature was set at 35 °C and the injection
- 138 volume was 10 µL. The scanning mode was positive-ionization mode.

140	A Q Exactive Focus (Thermo Scientific, USA) with a heat electrospray ionization, a
141	quaternary pump, an autosampler, an online vacuum degasser, and a thermostatted
142	column compartment was employed for analysis. The optimized parameters of MS
143	are: spray voltage: +3500 or -3000V; sheath gas pressure: 35 arb; aux gas pressure: 5
144	arb; sweep gas pressure: 0 arb; capillary temperature: 320 °C; auxiliary gas heater
145	temperature: 300 °C; S-lens RF level: 50 V, scan mode: (1) full MS: resolution: 70
146	000; automatic gain control target: 1.0e ⁶ ; maximum injection time: 50 ms; scan range:
147	100-1000 m/z ; (2) dd-MS ² /dd-SIM: resolution: 35000; automatic gain control target:
148	$1.0e^{6}$; maximum injection time: 50 ms; loop count: 5; isolation window: $3.0 m/z$;
149	NCE/stepped: 20 30 40; dynamic exclusion: 10s. Nitrogen was used for spray
150	stabilization and as the collision gas in the C-trap. The details of quantitative and
151	quantitative ionization of TMX and its metabolites were shown in Table S1.
152	
153	Isolation of RNA, cDNA synthesis and real-time PCR
154	Trizol reagent (Life Technology, Beijing, China) was used to isolate total RNA from
155	lizard liver, brain and kidney. Remove traces of DNA by incubation with DNAse-I
156	(Ambion). The RNA was dissolved in RNase-free water and stored at -80 °C. Reverse
157	transcription reaction mixtures contained 4µL of DNTP, 2µL of Oligo $(dT)_{15}$ primers
158	and 22 μ L of total RNA. The mixture was heated at 70 °C for 5 min and quickly
159	cooled down on ice. Added 8 μL of 5×6 buffer, 2 μL of M-mlv, and 40 units RNAsin
160	(an RNase inhibitor) in a total volume of 41µL after cooling. The mixture was

161	incubated at 42 °C for 50 min and then heated to 95 °C for 5 min to inactivate the
162	reverse transcription reaction.
163	
164	Genes of P450 enzymes family (cyp 1a1, cyp 2c8, cyp 2d3, cyp 2d6, cyp 3a4, cyp
165	3a7), Glutathione S-transferase (GST) family (gstt, gsta, gstm, gstp) and Aldehyde
166	oxidase (aox) were selected in this study. Primers were designed using NCBI
167	Primer-Blast (Table S2). The SYBR GREEN PCR kit (Tiangen Biotech, Beijing,
168	China) was used in Real-time PCR performed in the MX3005P realtime quantitative
169	polymerase chain reaction system (Stratagene, USA). The thermal cycle settings were:
170	5min at 95 °C, 40 cycles of 30s at 95 °C, 40s at 54 °C and 40s 72 °C. The MxPro
171	software was used in sample analysis. According to our previous results, the β -actin
172	gene was considered to be the most stable reference gene 32 . We sequenced the
173	Real-time PCR products and performed sequence alignments to verify product
174	specificity.
175	
176	Inhibition of enzyme activity
177	The enzyme inhibitors nootkatone, sulfaphenazolum, quinidine, omeprazole,
178	ketoconazole, 2,4-dinitrochlorobenzene, and estrogen were dissolved in Me ₂ SO and
179	configured as 1mmol /L solution. Fresh liver was quickly collected after each lizard
180	(background clean) was euthanized. The blood on the surface of liver was washed

away with 8.5% salt water. The liver was then placed in 50mL centrifuge tube, adding

182	30mL potassium phosphate buffer (pH=7.4) for tissue homogenate. Incubation
183	mixtures were prepared as follow: 1mL liver tissue homogenate, 10 μ L TMX solution
184	(100 ppm, ACN), 5μ L enzyme inhibitor solution. The ACN and Me ₂ SO ratio in
185	incubations did not exceed 1.5%. Considering the lizard is hypothermic animal,
186	incubations were aerobic at 25 $^{\circ}$ C for 1h. At the end of the reaction, 2 mL of
187	ice-acetonitrile was added to terminate the reaction. After mixing and shaking, the
188	mixtures were centrifuged at 10,000 rpm for 5 min. The supernatants were filtered
189	through a 0.22µm filter (Nylon 66) into a sample vial for HPLC-QE analysis.
190	
191	Data analysis
192	Pharmacokinetic parameters were calculated in the degradation of TMX. The
193	degradation of TMX in blood appeared to follow a pseudo-first-order kinetic reaction.
194	The relation between concentrations of TMX (C) and the sampling time (t) was
195	expressed as follow:
196	$\lg C = -\frac{k \cdot t}{2.303} + b \qquad (1)$
197	The half-life period $t_{1/2}$ of TMX was calculated as follow:
198	$t_{1/2} = \frac{0.693}{k} (2)$
199	The SPSS 16.0 was used for correlation and significance analysis. All the other values
200	in the text were presented as mean±SD.
201	

202 **RESULTS**

203 Chromatography and Identification

204	The standard HPLC/QE conditions provide good detection of TMX and its metabolite
205	CLO (Figure. S1). Linear calibration curves were obtained over the concentration
206	range of 0.004-1mg/L for TMX (y=48185.9x+615486, R ² =0.9976), CLO
207	(y=14901.2x+214429, R^2 =0.9977). Six replicate recovery evaluations were performed
208	at three fortified concentrations. The concentration levels were 0.01, 0.1, and 1mg/kg
209	(mg/L for blood) for TMX and CLO. Recoveries of each chemical ranged from 83 to
210	97 percent. The precision of the assay for each chemical ranged from 2 to 6 percent
211	(RSD). LODs were 0.003 mg/kg (mg/L) in lizard tissues (blood) for each chemical.
212	Based on tissue and blood concentration at minimal fortified level, the LOQs were
213	considered to be 0.01 mg/kg (mg/L). The HPLC/QE method described in this study
214	was validated for the detection of TMX and CLO in lizards.
215	
216	The Q Exactive focus has a resolution of more than 10, 000, 000 full width half
217	maximum, with higher resolution polarity switching and higher resolution ³³ . Higher
218	quality resolution provides better selectivity for qualitative analysis of complex
219	matrices ³⁴ . The selection of qualitative and quantitative ions for TMX-dm,
220	TMX-dm-NO, TMX-NH ₂ , CLO-dm, CLO-NO, and CLO-NH ₂ (structural formula
221	seen Figure. 1) was generally followed the method described by Dick et al. ²³ and
222	made some modifications. In the MRM spectra of TMX and CLO (standards,
223	dissolved in acetonitrile), we speculated that the formulas of fragment ion peaks at

224	m/z 131.9669 should be $C_4H_3CINS^+$, which is consistent with the results of mass bank.
225	This fragment is the chlorine-substituted thiazole ring part of TMX and CLO (Figure.
226	S2). In fact, the metabolites that concerned in our study all contain this
227	chlorine-substituted thiazole ring, which could produce an ion peak of 131.9669 in
228	mass spectrometry. After we used the m/z of each metabolite as the parent ion for
229	MRM mode scans on treated lizard samples, we observed the fragment ion peak at
230	m/z 131.9669 in all scans (data not shown). Therefore, the fragment ion of 131.9669
231	was used as the quantitative ion for relative quantitative analysis of each metabolite.
222	
232	
232	Metabolism in lizard blood
232 233 234	Metabolism in lizard blood After single oral administration, the blood concentration-time curve of TMX was
232 233 234 235	Metabolism in lizard blood After single oral administration, the blood concentration-time curve of TMX was studied (Figure 2). The concentration of TMX first increased with time, reached the
 232 233 234 235 236 	Metabolism in lizard blood After single oral administration, the blood concentration-time curve of TMX was studied (Figure 2). The concentration of TMX first increased with time, reached the highest value at 3 h, and then decreased over time. The decline pattern was in
 232 233 234 235 236 237 	Metabolism in lizard blood After single oral administration, the blood concentration-time curve of TMX was studied (Figure 2). The concentration of TMX first increased with time, reached the highest value at 3 h, and then decreased over time. The decline pattern was in accordance with the first order kinetics. According to equation 2, the $t_{1/2}$ of TMX was
 232 233 234 235 236 237 238 	Metabolism in lizard blood After single oral administration, the blood concentration-time curve of TMX was studied (Figure 2). The concentration of TMX first increased with time, reached the highest value at 3 h, and then decreased over time. The decline pattern was in accordance with the first order kinetics. According to equation 2, the t _{1/2} of TMX was 2.70 h. The elimination of TMX in lizard blood was fast.
 232 233 234 235 236 237 238 239 	Metabolism in lizard blood After single oral administration, the blood concentration-time curve of TMX was studied (Figure 2). The concentration of TMX first increased with time, reached the highest value at 3 h, and then decreased over time. The decline pattern was in accordance with the first order kinetics. According to equation 2, the $t_{1/2}$ of TMX was 2.70 h. The elimination of TMX in lizard blood was fast.

241 The residues of TMX and its metabolites were detected in tissue and blood samples at

- 242 1, 3, 6, 12, 24h (shown in Figure.3). The concentration of TMX in blood rapidly
- 243 reached the maximum value at 3h after oral administration, while the highest residual
- 244 concentration in tissues was detected 6h over oral administration. TMX was absorbed

245	quickly into the blood, and then allocated to each tissue according to the
246	two-compartment model. In all tissues, the highest TMX and CLO concentrations
247	were detected in gonad at 6h after administration. The high residue in gonad indicated
248	that it might have potential reproductive toxicity risk to lizards. The TMX residues in
249	heart and lung were also very high probably due to ample blood exchange in these
250	organs. The lowest residues of TMX and its metabolites were detected in fat. TMX
251	and its metabolites had good water solubility; therefore did not accumulate easily in
252	fat. The residues of TMX and its metabolites were also extremely low in brain. The
253	blood-brain barrier hindered the transmission of TMX and its metabolites to the brain.
254	The residues of TMX in skin were maintained at a high level. Although the
255	concentration of TMX in skin decreased with time, the concentrations of its
256	metabolites remained at a relatively stable concentration after 6h. As a common
257	molting animal, lizards can get rid of pollutants through molting. Therefore, the high
258	pollutant residues in the skin provided a possibility to remove pollutants through
259	molting.
260	
261	Liver and kidney were considered as the main metabolism organs. The residues of
262	TMX were not high in liver and kidney in our study that reflected the balance of
263	metabolism and absorption. It was worth noting that highest residuals of CLO and
264	TMX-dm were detected in kidney. As water-soluble compounds, CLO and TMX-dm

were easily excreted through urine. *Eremias argus* adapted to the dry life. Low urine

volume was the main limiting factor for the residual of TMX metabolites in the

- kidneys of lizards.
- 268

269 Quantification of mRNA by real time PCR

270 P450s, aldehyde oxidase (AOX) and glutathione S-transferase (GST) are studied as important neonicotinoid pesticides metabolism related enzyme systems²⁴. The 271 272 expression of the P450s gene family (cyp1al, cyp2c8, cyp2d3, cyp2d6, cyp3a4, 273 *cyp3a7*), GST gene family (*gstt, gsta, gstm, gstp*) and *aox* in the lizard liver, brain and 274 kidney was determined at 12h after oral administration (Figure. 4). In the liver, the 275 expressions of *cyp3a4* and *aox* were up regulated significantly. Meanwhile, the 276 expression of gsta and gstm showed obvious inhibition (p < 0.05). In the brain, in 277 addition to the slightly increased expression of cyp3a7, other enzyme genes in P450s 278 family showed no obvious change (p > 0.05). In GST family, the expressions of gstt 279 and *gsta* increased significantly, while the expressions of *gstm* and *gstp* didn't change 280 obviously (p > 0.05). In kidney, the mRNA expressions of GST family didn't show 281 obvious change. We observed the up-regulated expression of *cyp3a7*, while other 282 P450 genes and *aox* were inhibited to varying degrees. These results indicated that 283 CYP 3A4 and AOX played a leading role in TMX metabolism in liver, while CYP 284 3A7 played a leading role in kidney. CYP 3A is of great significance in the metabolic 285 process of TMX.

287 Effects of Enzyme inhibitors

288 Changes in concentration of TMX and its primary and secondary metabolites after 289 addition of enzyme inhibitors were shown in Figure. 5. In sulfaphenazolum and 290 ketoconazole groups, the production of all metabolites was inhibited and this 291 phenomenon was more pronounced in sulfaphenazolum group. This result indicated 292 that in addition to CYP 3A4, CYP 2C9 might also play a key role in the metabolism 293 of TMX. The formation of TMX-DM-NH₂ was inhibited in estrogen group while the 294 formation of CLO-NH₂ and CLO-NO did not change significantly. The results show 295 that AOX has a greater effect on the nitro reduction of TMX-DM than CLO.

296

297 **DISCUSSION**

298 N-demethylation, N-nitro reduction and cleavage of the oxadiazine are considered to 299 be the major metabolic reactions after TMX entry into organisms³⁵. However, as a 300 neonicotinoid with tertiary nitrogen, TMX is a poor substrate for nitro reduction²³. 301 Therefore, CLO (formed by cleavage of the oxadiazine) and TMX-dm (formed by 302 demethylation) are the main metabolites of TMX. CLO is widely detected in metabolic tests of TMX in mammals, plants, and insects³⁵⁻³⁸. P450s family is thought 303 304 to play an important role in TMX metabolism towards CLO. Results from human 305 recombinant CYP450 enzymes in vitro experiments showed that CYP 3A4, 2C19 and 306 2B6 participated in this metabolic process, and the role of CYP 3A4 is much more important than 2C19 and 2B6³⁹. This result is consistent with the strong expression of 307

308	<i>cyp3a4</i> in the liver of our study. It has been reported that C or N-de-hydrocarbon and
309	C-hydroxylation are the common ways of CYP3A4 metabolism ⁴⁰ . Meanwhile, we
310	detected strong expression of cyp3a7 in kidney. The CYP 3A family may be
311	associated with the epoxide reduction in the metabolism process of TMX to CLO.
312	The enzyme inhibitor test showed that CYP 2C9 was also involved in the metabolism
313	of TMX. The CYP 2C9 and 2C19 genes share 91% homology, and their catalytic
314	substrates are approximately the same ⁴¹ . The content of CYP 2C9 in animals exceeds
315	that of CYP 2C19 ⁴² . The CYP 2C9 and 2C19 have different effects on TMX
316	metabolism in different species.

As a demethylated metabolite of TMX, TMX-dm is considered as a potential 318 carcinogen and is the main cause of TMX's carcinogenicity^{22,43}. The residual 319 320 concentration of TMX-dm varied significantly in metabolic studies of different 321 species. For example, studies had shown that TMX could be converted to TMX-dm 322 and cause a significant increase in liver cancer in mice. However, the residue of 323 TMX-dm was very low and did not show carcinogenic effect in rat. Meanwhile, almost no TMX-dm was detected in human microsome assays⁴⁴. It is reported that 324 CYP 2C19 is the key enzyme for the conversion of TMX to TMX-dm³⁹. However, the 325 326 production of TMX-dm varied in different spices suggested that the conversion of 327 TMX to TMX-dm might be a complicated process not only dominated by one 328 metabolic enzyme. The difference in the structure and activity of metabolic enzymes

between species is the main reason for this result. In our study, TMX-dm residues
were detected in all organs except brain and fat, with the highest residue
concentration detected in kidney. This might pose a potential carcinogenic risk to the
lizard.

334	The electronegative N-nitro tip (=N-NO ₂) is considered as a characteristic structure
335	that can selectively bind to the insect nAChR ^{45,46.} However, nitro-reduction of
336	nitroneonicotinoids to form the positively charged aminoguanidine and guanidine
337	metabolites is an activation of mammalian neurotoxicity ^{17,23} . Although some P450
338	enzymes such as CYP 1A2, CYP 2B6, CYP 2D6 and CYP 2E1 were reported to be
339	involved in this process, AOX was still considered to be the main enzyme affecting
340	this process ^{47,48} . When specific electron donors are present, AOX could reduce
341	nitroguanidine neonicotinoids to form nitroso metabolites by two electrons and to
342	form aminoguanidines by six electrons ⁴⁹ . As we discussed above, TMX is not a
343	suitable nitro-reduction substrate, whereas TMX-dm and CLO showed opposite
344	properties. It had been reported that AOX of rabbit liver reduced TMX-dm to
345	TMX-dm-NO and TMX-dm-NH ₂ , CLO to CLO-NO and CLO -NH ₂ 24 . The results of
346	our study confirmed this conclusion. The upregulation of AOX mRNA expression in
347	the liver facilitated further nitro reduction of TMX-dm and CLO. It should be noted
348	that the expression of AOX in the kidney is not active, and the inhibition of AOX did
349	not have a significant effect on the production of the metabolites in the enzyme

350	inhibitor test. Because of rapid excretion, low residual concentrations of metabolites
351	in lizard do not stimulate the strong expression of AOX in our study.
352	
353	GST is a type of phase II isoenzyme that involved in eliminating exogenous
354	contaminants through the coupling of glutathione (GSH) and electrophilic substrates
355	to generate soluble compounds ⁵⁰ . The substitutions of chlorine on thiazole and
356	pyridine of neonicotinoid could be partially to be replaced by GSH, yielding
357	ultimately to the N-acetylcysteine, S-substituted-cysteinyl and S-methyl
358	derivatives ^{35,39} . It is reported that RNA interference of GST genes increases the
359	susceptibility of insects to TMX ⁵¹ . GST might be related to the clearance process of
360	TMX and its metabolites. Meanwhile, GST is an important indicator of the body's
361	oxidative stress response ⁵² . Changes in GST-related regulatory genes in the kidney
362	were not significant, but expressions of <i>gsta</i> and <i>gstm</i> were severely inhibited in the
363	liver. This result indicated that TMX might cause oxidative stress in the liver. Oral
364	exposure to TMX may cause hepatic injury in lizards.
365	

Kevin et.al reported the metabolism of TMX in mice²⁴. The TMX concentrations in mice liver and blood declined quickly that consistent with our results. They found TMX was metabolically active in the mice brain and high residual concentration of TMX-dm was detected. However, the concentrations of TMX and its metabolites in lizard brain were very low in our study. TMX and its metabolites hardly entered the

371	brain through the blood-brain barrier in lizard. TMX-dm was tested to have a longer
372	persistence than TMX and CLO in mice liver. However, this phenomenon was not
373	observed in lizard liver. These results indicated that the metabolism of TMX in tissues
374	was species-dependent. TMX, TMX-dm, and CLO could be excreted in urine
375	(19-27%) and feces (0.9-1.5%) in mice within 24 hours. This was consistent with our
376	results. Low residue concentrations of TMX were detected in lizard kidney. TMX and
377	its metabolites were highly water-soluble. Therefore, excretion through the urine was
378	their main route of elimination. Metabolism and exclusion were the clearances of
379	TMX that occured in the kidney. However, the residues of TMX-dm and CLO were
380	very high in lizard kidney. Eremias argus is a type of animal that prefers arid
381	environments. Low urine output was the main cause of TMX-dm and CLO residues in
382	the kidneys. The residuals of TMX-dm in lizard tissues might pose a potential
383	carcinogenic risk to the lizard.

385 ABBREVIATIONS USED

- 386 TMX, thiamethoxam; CLO, clothianidin; CLO-dm, desmethylclothianidin; dm,
- desmethyl; TMX-dm, desmethylthiamethoxam; AOX, aldehyde oxidase; GST,
- 388 glutathione S-transferase; GSH, glutathione.
- 389

390 ACKNOWLEDGEMENTS

- 391 We thank our RCEES laboratory colleagues Huili Wang, Baoyuan Guo and Weiyu
- Hao for advice and assistance.

394 SUPPORTING INFORMATION DESCRIPTION

- 395 Supporting information contains two figures and two tables. The captions are listed as
- 396 below.
- 397
- 398 Figure. S1. Representative HPLC-MS chromatogram of the expectations of 1 mg/L
- 399 for (A) TMX, (B) CLO

400

401 Figure. S2. The structure of fragment ion peak at m/z 131.9669

402

403 Table S1 The quantitative and quantitative ionizations of TMX and its metabolites

404

- 405 Table S2 Primers used for PCR and the quantification of the mRNA expression by
- 406 real-time PCR.

REFERENCE

409	(1)	Zhang, P.; Sun, H.; Ren, C.; Min, L.; Zhang, H., Sorption mechanisms of
410		neonicotinoids on biochars and the impact of deashing treatments on biochar
110		neoneotholds on oroenars and the impact of deasing reathents on oroenar
411		structure and neonicotinoids sorption. Environ. Pollut. 2018, 234, 812-820.
412	(2)	Hallmann, C. A.; Foppen, R. P.; van Turnhout, C. A.; De, K. H.; Jongejans, E.,
413		Declines in insectivorous birds are associated with high neonicotinoid
414		concentrations. Nature 2014, 511, 341-343.
415	(3)	Elbert, A.; Nauen, R., Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to
416		insecticides in southern Spain with special reference to neonicotinoids. Pest
417		Manag. Sci. 2015, 56, 60-64.
418	(4)	Mori, T.; Wang, J.; Tanaka, Y.; Nagai, K.; Kawagishi, H.; Hirai, H.,
419		Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot
420		fungus Phanerochaete sordida. J. Hazard. Mater. 2017, 321, 586-590.
421	(5)	Morrissey, C. A.; Mineau, P.; Devries, J. H.; Sanchezbayo, F.; Liess, M.;
422		Cavallaro, M. C.; Liber, K., Neonicotinoid contamination of global surface
423		waters and associated risk to aquatic invertebrates: a review. Environ. Int. 2015,
424		74, 291-303.
425	(6)	Karmakar, R.; Kulshrestha, G., Persistence, metabolism and safety evaluation of
426		thiamethoxam in tomato crop. Pest Manag. Sci. 2009, 65, 931-937.
427	(7)	Domingues, C.; Abdalla, F. C.; Balsamo, P. J.; Pereira, B.; Hausen, M. A.; Costa,
428		M. J.; Silvazacarin, E., Thiamethoxam and picoxystrobin reduce the survival and

- 429 overload the hepato-nephrocitic system of the Africanized honeybee.
- 430 *Chemosphere* **2017**, *186*, 994-1005.
- 431 (8) De Morais, C. R.; Carvalho, S. M.; Carvalho Naves, M. P.; Araujo, G.; Aaa, D.
- 432 R.; Bonetti, A. M.; Spanã³, M. A., Mutagenic, recombinogenic and carcinogenic
- 433 potential of thiamethoxam insecticide and formulated product in somatic cells
- 434 of Drosophila melanogaster. Chemosphere **2016**, *165*, 342-351.
- 435 (9) Fan, Y.; Shi, X., Characterization of the metabolic transformation of
- thiamethoxam to clothianidin in Helicoverpa armigera larvae by SPE combined
- 437 UPLC-MS/MS and its relationship with the toxicity of thiamethoxam to
- 438 *Helicoverpa armigera* larvae. J. Chromatogr. B. 2017, 349,1061-1062.
- 439 (10) Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A., Overview of the status and
- 440 global strategy for neonicotinoids. J. Agric. Food. Chem. 2011, 59, 2897-2908.
- 441 (11) Jones, A.; Harrington, P.; Turnbull, G., Neonicotinoid concentrations in arable
- soils after seed treatment applications in preceding years. *Pest Manag. Sci.* 2015,
- *443 70*, 1780-1784.
- 444 (12) Sánchezbayo, F., Environmental science. The trouble with neonicotinoids.
- 445 *Science* **2014**, *346*, 806-807.
- 446 (13) Goulson, D., REVIEW: An overview of the environmental risks posed by
- 447 neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977-987.
- 448 (14)Xu, T.; Dyer, D. G.; Mcconnell, L. L.; Bondarenko, S.; Allen, R.; Heinemann, O.,
- 449 Clothianidin in agricultural soils and uptake into corn pollen and canola nectar

450	after multiyear seed treatment applications. Environ. Toxicol. Chem. 2016, 35,
451	311-321.
452	(15) Hladik, M. L.; Main, A. R.; Goulson, D., Environmental risks and challenges
453	associated with neonicotinoid insecticides. Environ. Sci. Technol.2018.
454	52(6):3329-3335
455	(16) Honda, H.; Tomizawa, M.; Casida, J. E., Neo-nicotinoid metabolic activation and
456	inactivation established with coupled nicotinic receptor-CYP3A4 and -aldehyde
457	oxidase systems. Toxicol. Lett. 2006, 161, 108-114.
458	(17) And, M. T.; Casida, J. E., Selective toxicity of neonicotinoids attributable to
459	specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol.
460	2003 , <i>48</i> , 339-364.
461	(18) Tomizawa, M.; Casida, J. E., Neonicotinoid insecticide toxicology: mechanisms
462	of selective action. Annu. Rev. Pharmacol. 2005, 45, 247-268.
463	(19) Tsvetkov, N.; Samson-Robert, O.; Sood, K.; Patel, H. S.; Malena, D. A.;
464	Gajiwala, P. H.; Maciukiewicz, P.; Fournier, V.; Zayed, A., Chronic exposure to
465	neonicotinoids reduces honey bee health near corn crops. Science 2017, 356,
466	1395-1397.
467	(20) Woodcock, B. A.; Bullock, J. M.; Shore, R. F.; Heard, M. S.; Pereira, M. G.;
468	Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P., Country-specific
469	effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017,
470	356, 1393-1395.

471	(21) Rundlöf, M.; Andersson, G. K.; Bommarco, R.; Fries, I.; Hederström, V.;
472	Herbertsson, L.; Jonsson, O.; Klatt, B. K.; Pedersen, T. R.; Yourstone, J., Seed
473	coating with a neonicotinoid insecticide negatively affects wild bees. Nature
474	2015 , <i>521</i> , 77-80.
475	(22) Green, T.; Toghill, A.; Lee, R.; Waechter, F.; Weber, E.; Noakes, J.,
476	Thiamethoxam induced mouse liver tumors and their relevance to humans part 1:
477	mode of action studies in the mouse. Toxicol. Sci. 2005, 86, 36-47.
478	(23) Dick, R. A.; Kanne, D. B.; Casida, J. E., Substrate specificity of rabbit aldehyde
479	oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides. Chem.
480	<i>Res. Toxicol.</i> 2006 , <i>19</i> , 38-43.
481	(24) Ford, K. A.; Casida, J. E., Unique and common metabolites of thiamethoxam,
482	clothianidin, and dinotefuran in mice. Chem. Res. Toxicol. 2006, 19, 1549-1556.
483	(25) Gibbons, J., The global decline of reptiles, deja vu Amphibians. <i>Bioscience</i> 2000,
484	50, 653-666.
485	(26) Böhm, M.; Collen, B.; Baillie, J. E. M.; Chanson, J.; Cox, N.; Hammerson, G.;
486	Hoffmann, M.; Livingstone, S. R.; Ram, M.; Rhodin, A. G. J., The Conservation
487	Status of the World's Reptiles 1 2. Biol. Conserv. 2013, 157, 372-385.
488	(27) Amaral, M. J.; Carretero, M. A.; Bicho, R. C.; Soares, A. M.; Mann, R. M., The
489	use of a lacertid lizard as a model for reptile ecotoxicology studiespart 1 field
490	demographics and morphology. Chemosphere 2012, 87, 757-764.
491	(28) Wang, Y.; Yu, D.; Xu, P.; Guo, B.; Zhang, Y.; Li, J.; Wang, H., Stereoselective

492	metabolism, distribution, and bioaccumulation brof triadimefon and triadimenol
493	in lizards. Ecotox. Environ. Safe. 2014, 107, 276-283.
494	(29) Rich, C. N.; Talent, L. G., Soil ingestion may be an important route for the
495	uptake of contaminants by some reptiles. Environ. Toxicol. Chem. 2009, 28, 311-
496	315.
497	(30) Wang, Y.; Guo, B.; Gao, Y.; Xu, P.; Zhang, Y.; Li, J.; Wang, H., Stereoselective
498	degradation and toxic effects of benalaxyl on blood and liver of the Chinese
499	lizard Eremias argus. Pestic. Biochem. Phys. 2014, 108, 34-41.
500	(31) Shen, Q.; Li, J.; Xu, P.; Li, W.; Zhuang, G.; Wang, Y., Enantioselective
501	metabolism of triadimefon and its chiral metabolite triadimenol in lizards.
502	Ecotox. Environ. Safe. 2017, 143, 159-165.
503	(32) Chang, J.; Wang, H.; Xu, P.; Guo, B.; Li, J.; Wang, Y.; Li, W., Oral and dermal
504	diflubenzuron exposure causes a hypothalamic-pituitary-thyroid (HPT) axis
505	disturbance in the Mongolian racerunner (Eremias argus). Environ. Pollut. 2018,
506	<i>232</i> , 338-346.
507	(33)Sun, Z.; Li, Z.; Zuo, L.; Wang, Z.; Zhou, L.; Shi, Y.; Kang, J.; Zhu, Z.; Zhang, X.,
508	Qualitative and quantitative determination of YiXinShu Tablet using ultra high
509	performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap
510	high-resolution accurate mass spectrometry. J. Sep. Sci. 2017, 40(22):4453-4466.
511	(34) Duå, e. M.; Jandovskã, V.; P, Ä. ermà k.; Mikyå, k. A.; Olå, o. J., A novel
512	approach for identification of biologically active phenolic compounds in

F12	a a	ma a tri a a a		المتسمار ما	and damage	ala ambritman	manage an astronasta	
513	complex	matrices	using	nyoria	quadrupe	ole-orbitrar	mass spectromete	Г. A

- 514 promising tool for testing antimicrobial activity of hops. *Talanta* **2016**,*156*,
- 515 209-217.
- 516 (35) Casida, J. E., Neonicotinoid metabolism: compounds, substituents, pathways,
- 517 enzymes, organisms, and relevance. J. Agric. Food. Chem. 2010, 59, 2923-2931.
- 518 (36) Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V. L.; Kaussmann, M.,
- 519 Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects
- 520 and plants. *Pestic. Biochem. Phys.* **2003**, *76*, 55-69.
- 521 (37) Ford, K. A.; Casida, J. E., Comparative metabolism and pharmacokinetics of
- 522 seven neonicotinoid insecticides in spinach. J. Agric. Food. Chem. 2008, 56,
- 523 10168-10175.
- 524 (38) Benzidane, Y.; Touinsi, S.; Motte, E.; Jadashécart, A.; Communal, P. Y.; Leduc,
- 525 L.; Thany, S. H., Effect of thiamethoxam on cockroach locomotor activity is
- associated with its metabolite clothianidin. Pest Manag. Sci. 2010, 66, 1351-
- 527 1359.
- 528 (39) Shi, X.; Dick, R. A.; Ford, K. A.; Casida, J. E., Enzymes and inhibitors in
- 529 neonicotinoid insecticide metabolism. J. Agric. Food. Chem. 2009, 57,
- **530 4861-4866**.
- 531 (40) Wei, X. D.; Zhang, F.; Juan, L. I.; Yang, Y. P.; Meng, X. D.; Zhen-Dong, W. U.;
- 532 Yang, J., CYP3A4 basic and clinical research progress. *Progress in Modern*
- 533 *Biomedicine* **2014**,*14*,2180-2182.

534	(41) Kusama, M.; Maeda, K.; Chiba, K.; Aoyama, A.; Sugiyama, Y., Prediction of the
535	effects of genetic polymorphism on the pharmacokinetics of CYP2C9 substrates
536	from in vitro data. Pharm. Res-Dordr. 2009, 26, 822-835.
537	(42) Rendic, S.; Guengerich, F. P., Survey of human oxidoreductasesand cytochrome
538	P450 enzymes involved in the metabolism of xenobiotic and natural chemicals.
539	Chem. Res. Toxicol. 2015, 28, 38-42.
540	(43) Okle, O. S. E.; Euony, O. I. E.; Khafaga, A. F.; Lebda, M. A., Thiamethoxam
541	induced hepatotoxicity and pro-carcinogenicity in rabbits via motivation of
542	oxidative stress, inflammation, and anti-apoptotic pathway. Environ Sci Pollut
543	Res Int. 2018, 25(5):4678-4689.
544	(44) Green, T.; Toghill, A.; Lee, R.; Waechter, F.; Weber, E.; Peffer, R.; Noakes, J.;
545	Robinson, M., Thiamethoxam induced mouse liver tumors and their relevance to
546	humans. Part 2: species differences in response. Toxicol. Sci. 2005,86(1):48-55.
547	(45) Raby, M.; Nowierski, M.; Perlov, D.; Zhao, X.; Hao, C.; Poirier, D. G.; Sibley, P.
548	K., Acute toxicity of six neonicotinoid insecticides to freshwater invertebrates.
549	Environ. Toxicol. Chem. 2018. DOI: 10.1002/etc.4028
550	(46) Han, W.; Tian, Y.; Shen, X., Human exposure to neonicotinoid insecticides and
551	the evaluation of their potential toxicity: An overview. Chemosphere 2018, 192,
552	59-65.
553	(47) Dick, R. A.; Kanne, D. B.; Casida, J. E., Nitroso-imidacloprid irreversibly

554 inhibits rabbit aldehyde oxidase. *Chem. Res. Toxicol.* **2007**, *20*, 1942-1946.

- 555 (48) Swenson, T. L.; Casida, J. E., Aldehyde oxidase importance in vivo in xenobiotic
- 556 metabolism: imidacloprid nitroreduction in mice. *Toxicol. Sci.* **2013**, *133*,
- 557 (1):22-28.
- 558 (49) Dick, R. A.; Kanne, D. B.; Casida, J. E., Identification of aldehyde oxidase as the
- neonicotinoid nitroreductase. *Chem. Res. Toxicol.* **2005**, *18*, 317-323.
- 560 (50) Mejia-Sanchez, F.; Montenegro-Morales, L. P.; Castillo-Cadena, J., Enzymatic
- activity induction of GST-family isoenzymes from pesticide mixture used in
- 562 floriculture. *Environ. Sci. Pollut. Res. Int.* **2018**, *25*(1):601-606.
- 563 (51) Yu, X.; Killiny, N., RNA interference of two glutathione S-transferase genes,
- 564 DcGSTe2 and DcGSTd1, increases the susceptibility of Asian citrus psyllid
- 565 (*Hemiptera: Liviidae*) to the pesticides, fenpropathrin and thiamethoxam. *Pest*
- 566 *Manag. Sci.* **2017**, *74*(3):638-647.
- 567 (52) Cid, A.; Picado, A.; Correia, J. B.; Chaves, R.; Silva, H.; Caldeira, J.; de Matos,
- 568 A. P.; Diniz, M. S., Oxidative stress and histological changes following exposure
- to diamond nanoparticles in the freshwater Asian clam Corbicula fluminea
- 570 (Müller, 1774). J. Hazard. Mater. 2015, 284, 27-34.

571	FIGURE CAPTIONS
572	
573	Figure. 1. Structure of the thiamethoxam and its metabolites
574	
575	Figure. 2. The TMX concentration-time curve in blood after single oral administration
576	$(\log C = -0.1116t + 1.6567).$
577	
578	Figure. 3. Tissue distribution of TMX and its metabolites CLO and TMX-dm at 1, 3,
579	6, 12, 24h. The relative concentrations of TMX-dm in tissues were calculated base on
580	the relative concentration of TMX-dm in the liver at 3h as 100.
581	
582	Figure. 4. Relative gene levels of cyp1a1, cyp2c8, cyp2d3, cyp2d6, cyp3a4, cyp3a7,
583	gstt, gsta, gstm, gstp, aox in the liver, kidney and brain at 12h. The result was
584	evaluated as the relative ratio of the expression level of each mRNA to that of β -actin.
585	Two bars labeled above the error line indicate a significant difference on gene
586	expression at the same time point between the control group and treatment groups at a
587	significant level of $p < 0.05$ (one-way ANOVA).
588	
589	Figure. 5. Changes in the concentration of TMX metabolites after enzyme inhibitor
590	addition. The result was evaluated as the relative ratio of each TMX metabolite
591	concentration level of each enzyme inhibitor group to that of control group.

Figure. 1

34 ACS Paragon Plus Environment

Figure. 3

Figure. 4

Figure. 5

Graphic for table of contents