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Abstract
Here, we report the results of a large-scale PCR survey on the prevalence and diversity of

adenoviruses (AdVs) in samples collected randomly from free-living reptiles. On the territo-

ries of the Guadarrama Mountains National Park in Central Spain and of the Chafarinas

Islands in North Africa, cloacal swabs were taken from 318 specimens of eight native spe-

cies representing five squamate reptilian families. The healthy-looking animals had been

captured temporarily for physiological and ethological examinations, after which they were

released. We found 22 AdV-positive samples in representatives of three species, all from

Central Spain. Sequence analysis of the PCR products revealed the existence of three hith-

erto unknown AdVs in 11 Carpetane rock lizards (Iberolacerta cyreni), nine Iberian worm liz-

ards (Blanus cinereus), and two Iberian green lizards (Lacerta schreiberi), respectively.
Phylogeny inference showed every novel putative virus to be a member of the genus Atade-
novirus. This is the very first description of the occurrence of AdVs in amphisbaenian and

lacertid hosts. Unlike all squamate atadenoviruses examined previously, two of the novel

putative AdVs had A+T rich DNA, a feature generally deemed to mirror previous host switch

events. Our results shed new light on the diversity and evolution of atadenoviruses.

1. Introduction
Adenoviruses (AdVs) are non-enveloped, double-stranded DNA viruses with icosahedral viri-
ons of 70−100 nm in diameter. AdVs commonly occur in humans and mammalian animals as
well as in other representatives of vertebrates worldwide. Each host may harbor various num-
ber of AdV types classified by serology. The family Adenoviridae is divided into five genera
presently [1]. The basis for the genus classification was originally the host origin, especially for
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the two conventional genera,Mastadenovirus and Aviadenovirus. The genus Ichtadenovirus
was established to include the single fish AdV isolate known to date [2]. Two additional novel
genera contain AdVs originating from distantly related hosts. Siadenovirus includes a frog iso-
late [3] along with an increasing number of AdV types isolated from, or described in, birds [4].
Fatal siadenovirus infection has been described among captive tortoises as well [5]. First mem-
bers of the genus Atadenovirus have been isolated from cattle and other ruminants as well as
birds, however, targeted studies aiming at the clarification of the host origin of this virus lineage
led to the recognition of squamate reptiles as the vertebrate group, with which atadenoviruses
most probably co-speciated [6–8].

The presence of AdVs in squamate hosts has been observed by serology, light and electron
microscopy, and by PCRs. A consensus, nested PCR system, targeting a conservative short
(approx. 300 bp) fragment of the DNA dependent DNA polymerase gene (pol) proved to be
very sensitive and efficient in detection of AdVs in reptiles [8]. Various squamate groups
turned out to harbor different AdVs. These include members of the Agamidae, Chamaeleoni-
dae, Helodermatidae, Iguanidae, Scincidae, and Varanidae families, as well as those of the
infraorder Gekkota and several snake groups, such as boids [9–34].

Clinical signs ascribed to AdV infection in squamate reptiles may vary and most commonly
include lethargy, anorexia, enteritis, pneumonia, as well as neurological signs such as opistho-
tonus [33,35,36]. As infection without any clinical signs has also been observed, the pathologi-
cal role of AdVs in lizards and snakes still remains unclear [14,28,37].

The majority of our knowledge on AdVs of reptiles comes from captive pet animals, most
often produced by licensed breeders in North America and Europe. Data concerning the preva-
lence of AdVs in free-living reptiles are still rather limited [38,39].

In the present study, our aim was to estimate the prevalence and diversity of AdVs in speci-
mens of free-living native reptiles, captured alive at the Spanish national park Guadarrama
Mountains and in Northern Africa for the purpose of ecological or behavioral studies. We used
PCR with consensus nested primers, DNA sequencing and phylogeny inference for the prelim-
inary characterization of the newly-detected AdVs.

2. Materials and Methods

2.1. Samples
During April-May 2013, we made field work at several sampling sites at different elevations
in the Guadarrama Mountains National Park (Central Spain) and the surroundings. We cap-
tured by noosing Iberian green lizards (Lacerta schreiberi) at ‘Valle de La Fuenfría’ (40°440 N,
4°020W) and Carpetane rock lizards (Iberolacerta cyreni) at ‘Puerto de Navacerrada’ (40°470 N,
4°000W). We also lifted stones and captured Iberian worm lizards (Blanus cinereus) by hand at
`La Dehesa de la Golondrina´, near Navacerrada village (40°43´N, 04°01´W).

During two weeks in March 2013, we conducted field work also at the Chafarinas Islands
Nature Reserve, a small archipelago located in the south western area of the Mediterranean Sea
(35°11’N, 2°25’W). These islands are located 4.6 km off the northern Moroccan coast (Ras el
Ma, Morocco) and 50 km to the east of the Spanish city of Melilla. Here, we lifted stones and
captured by hand live amphisbaenians, namely checkerboard worm lizards (Trogonophis wieg-
manni), Chafarinas’ skinks (Chalcides parallelus), ocellated skinks (Chalcides ocellatus), Moor-
ish geckos (Tarentola mauritanica) and Vaucher’s wall lizards (Podarcis vaucheri) (Table 1).

Immediately after capture, animals were taken to the laboratory and cloacal swabs were col-
lected within sterile circumstances the same day. A total of 318 cloacal swabs were stored fro-
zen (at -20°C) until DNA extraction. All animals were released in good conditions at the
capture sites at the end of the study, approximately two weeks after capture (exact release dates
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varied between species and individuals). The captures and sampling procedures enforced all the
current European laws and ethical principles and were performed under license (permit number:
10/024398.9/13) from the Environmental Organism of Madrid Community (“Area de Conserva-
ción de Flora y Fauna. Dirección General del Medio Ambiente. Consejería de Medio Ambiente y
Ordenación del Territorio”) and by the Organismo Autónomo de Parques Nacionales.

2.2. DNA extraction
For nucleic acid extraction, 1 ml of 1X TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was
added to the vials and the swabs were soaked overnight. During the next day, microcentrifuge
tubes, containing the swabs in TE buffer, were continuously vortexed at 40 Hz. DNA was puri-
fied from 100 μl suspension, using the method described by Dán et al. [40] with slight modifi-
cations. We added 4 μl proteinase-K (20 mg/ml) and 10 μl sarcosyl (10%) solution to the
mixture and incubated them at 55°C for overnight digestion in a thermomixer. This was fol-
lowed by the addition of 300 μl guanidine-hydrochloride (8 M) and 20 μl ammonium-acetate
(7.5 M) solution. The mixture was incubated for one hour with gentle mixing in every 15 min.
The nucleic acids were precipitated by the addition of absolute ethanol (-20°C). After centrifu-
gation, the pellet was washed with 70% ice-cold ethanol, and spun again. After a short drying,
the DNA was dissolved in 50 μl of nuclease-free water.

2.3. Sample screening
To check the presence of adenoviral DNA, a very sensitive consensus nested PCR, targeting a
highly conserved region of the adenoviral DNA-dependent DNA polymerase gene, was applied
[8]. The amplification product was an approximately 320-bp-long fragment. After primer
removal, a 269−278-nucleotide-long sequence was to be obtained supposedly from every mem-
ber of the family Adenoviridae. The PCRs were performed in 50 μl final volume consisting of
the REDTaq1 ReadyMix™ (Sigma-Aldrich1, Saint Louis, MO, USA) polymerase enzyme
according to the manufacturers’ recommendation. The thermal profile of the PCR was identi-
cal to that described originally [8] except the denaturation steps that were set at 95°C.

We used another set of consensus primers, designed at our laboratory, to amplify an approx.
900-bp-long fragment from the conserved central part of the adenoviral genome [41]. The

Table 1. Results of PCR screening for the presence of adenoviruses by amplifying an approx. 300-bp-long fragment of the DNA-dependent DNA-
polymerase gene.

Species (family) Collection site Number of samples
screened

Number of positive
samples

Percentage

Iberian worm lizard (Blanus cinereus)(Amphisbaenidae) GM 18 9 50%

Checkerboard worm lizard (Trogonophis wiegmanni)
(Trogonophidae)

CI 102 0 0%

Ocellated skink (Chalcides ocellatus)(Scincidae) CI 10 0 0%

Doumergue’s skink (Chalcides parallelus) (Scincidae) CI 19 0 0%

Carpetane rock lizard (Iberolacerta cyreni) (Lacertidae) GM 36 11 30.6%

Iberian green lizard (Lacerta schreiberi) (Lacertidae) GM 59 2 3.4%

Vaucher’s lizard (Podarcis vaucheri)(Lacertidae) CI 17 0 0%

Common wall gecko (Tarentola mauritanica) (Phyllodactylidae) CI 57 0 0%

Total 318 22 6.9%

CI: Chafarinas Islands Nature Reserve (North Africa); GM:–Guadarrama Mountains National Park (Central Spain). The AdV-positive species are highlighted

in bold.

doi:10.1371/journal.pone.0159016.t001
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forward primer (5’-AATRTNCCYTHTGTTGCAGATCACG-3’) was designed to anneal close
to the stop codon of the penton base gene. The sequence of the reverse primer (5’-CCRCARTG
SGGNGCTARKC-3’) was taken from the beginning of the pVI gene of atadenoviruses. The
PCR program consisted of an initial denaturation step at 95°C for 5 min, followed by 45 cycles
of denaturation at 95°C for 30 sec, annealing at 46°C for 1 min, and elongation at 72°C for 1
min. The final elongation was at 72°C for 5 min.

The prevalence of AdVs was estimated as the percentage of positive samples out of the total
number of individuals of a given species collected and screened from a given collection site.

The PCR products were purified and sequenced directly on both strands. We performed the
sequencing reactions using the BigDye1 Terminator v3.1 Cycle Sequencing Kit (Life Technol-
ogies Corporation1, Carlsbad, CA, USA), and sent them for electrophoresis by a commercial
service at Baygen Institute (Szeged, Hungary) on an ABI PRISM 3100 Genetic Analyzer (Life
Technologies Corporation1, Carlsbad, CA, USA).

2.4. Sequence analysis and phylogenetic inference
For identification and comparison of the nucleotide (nt) sequences, the BLAST algorithms at
the NCBI website were used. Sequence editing and assembly was performed by applying the
Staden Sequence Analysis Package [42] with occasional manual corrections.

We performed phylogenetic calculations with amino acid (aa) sequences derived from the
nucleotide (nt) sequence of the PCR products. The homologous protein fragments were col-
lected from the GenBank with the use of the BLASTp application. Several representatives from
each AdV genus were included. Multiple aa alignments were prepared using the Clustal X ver-
sion 2 program [43].

Model selection was performed by the ProtTest version 2.3 [44]. Best model was applied
based on the Akaike (AIC) and Bayes (BIC) information criterion. Guide tree was constructed
using PHYLIP 3.69 (Protdist with JTT then Fitch with global rearrangements). We performed
the maximum likelihood analysis using the PhyML 3.0 online platform, with the results of the
model selection included (http://www.atgc-montpellier.fr/phyml/). The reliability of tree topol-
ogy was tested by performing bootstrap analysis as well as by aLRT-Shimodaira-Hasegawa-like
test. Phylogenetic trees were visualized using the FigTree v1.3.1. software (http://tree.bio.ed.ac.
uk/software/figtree/).

3. Results
Out of the 318 samples, 22 proved to be positive, which corresponded to an overall positivity
rate of 6.9% however, the AdV prevalence values for the individual populations showed great
differences, inasmuch as among the Iberian green lizards it was just 3.4%, whereas among the
Carpetane rock lizards and Iberian worm lizards was 30.5% and 50%, respectively (Table 1).
All positive samples were from animals captured in Central Spain, whereas every sample col-
lected on the Chafarinas Islands was found negative. Out of the five squamate families,
involved in the survey, merely two, the Amphisbaenidae and the Lacertidae were represented
among the positive samples.

After removal of the primer sequences, the pol fragments had a total length of 272 bp coding for
90 aa. Analysis of the sequences revealed the 22 positive samples to contain three hitherto unde-
tected putative AdVs. The sequence data obtained from these viruses was deposited to GenBank
and assigned to accession numbers (KT950885-KT950888). None of the novel adenoviral sequences
demonstrated higher aa identity percentage than 74% throughout the BLAST homology searches.

One of the newly-detected AdVs originated from the swabs of Iberian worm lizards (Blanus
cinereus), a native amphisbaenian of the Iberian Peninsula. It is noteworthy that 50% of the
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samples of this animal species were positive, and the sequences in all the 9 samples proved to
be identical, even at nt level. We named this putative virus amphisbaenian AdV-1 (AmAdV-1).
A second novel AdV was detected from the swabs of two Iberian green lizards (Lacerta schrei-
beri), also resulting in sequences completely identical even at nt level. This putative virus was
designated lacertid AdV-1 (LaAdV-1). Both individuals were males with nuptial coloration
and displayed mating behavior. A third, hitherto unknown pol sequence was obtained from 11
animals belonging to another lacertid species, the Carpetane rock lizard (Iberolacerta cyreni)
with a positivity rate exceeding 30%. Interestingly, the AdV sequences obtained from these liz-
ards showed variations so that two hypothetic genotypes exhibiting almost 8% aa sequence
divergence were recognized (Fig 1). The virus was named lacertid AdV-2 (LaAdV-2).

We attempted to amplify further sequences of the genomes of the three novel reptilian
AdVs. This was, however, successful only in case of two samples positive for the AmAdV-1.
The resulting 801-bp-long product encompassed the 3’ part of the penton base gene, and the
complete pVII and pX genes. The sequence was submitted to GenBank under the accession
number of KT932964. The complete pVII gene of AmAdV-1 is predicted to encode a protein
of 139 aa. The core protein pX, being the smallest adenoviral protein, consisted only of 61 aa,
being the shortest such protein of atadenoviruses thus far.

Phylogeny inference, based on the aa sequences derived from the PCR-amplified pol frag-
ments was suitable for the presentation of the clear monophyletic separation of every proposed
and accepted adenoviral genus [8,25,33]. The tree shown in Fig 2A was prepared using the LG
substitution model as the most appropriate based on both the AIC and BIC values. Gamma dis-
tribution and proportion of invariable sites were also included in the applied model. All three
novel reptilian AdVs clustered with members of the genus Atadenovirus. Within the genus,
lacertid AdVs displayed a rather well-supported monophyly. Surprisingly, the amphisbaenian
AdV clustered with duck AdV-1 (DAdV-1). However, supporting values, regarding this and
some other nodes, cannot be considered significant. A second phylogenetic tree, shown in Fig
2B, was constructed based on the derived aa sequences of the complete pVII ORF, including
the pVII aa sequence of the AmAdV-1. Both the AIC and BIC values suggested RtREV, a sub-
stitution model developed to describe the rapid evolution of retroviruses. Gamma distribution
as well as proportion of invariable sites and aa frequencies were included. By this tree, mono-
phyly of each genus was further supported as well as the position of AmAdV-1 clustering with
DAdV-1, however, support values still remained relatively low.

The G+C content of the short pol sequences determined in this study showed remarkable
variations. The individual values are presented in Table 2. While the nt composition of the
LaAdV-2 fragment was within the range of equilibrium, that of LaAdV-1 and AmAdV-1
sequences seemed to be biased towards A+T, similarly to atadenoviruses of non-reptilian
hosts [1].

4. Discussion
Prior to this study, PCR-detection and sequencing of AdVs in samples of deceased or live cap-
tive reptiles have been reported several times [8,25,29,33]. However, our study is the first sur-
vey aiming at the assessment of the prevalence and diversity of AdVs in free-living wild reptiles
in Europe and North Africa. The overall positivity rate of 6.9% can be considered rather low

Fig 1. Two (A and B) sequence variants of the putative lacertid adenovirus 2 found in 6 and 5 Carpetane rock lizards, respectively.
The divergent amino acids are highlighted with gray background.

doi:10.1371/journal.pone.0159016.g001
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Fig 2. Phylogeny reconstructions based on (A) the partial amino acid sequence of the DNA-polymerase (92 amino acids, maximum
likelihood, LG+I+G, α = 0.63, ρinv = 0.17) and (B) the complete pVII ORF amino acid sequence (92 amino acids, maximum likelihood,
RtREV+I+G+F, α = 1.095 ρinv = 0.039). Shimodaira-Hasegawa-like support values (SH) and bootstrap values are shown as node labels. SH
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especially in comparison with previous findings. For example, in a survey performed in Ger-
many, an infection rate of 36.1% has been reported [25]. However, their sample collection,
from about 70 dead or live captive snakes and lizards, predominantly consisted of animals that
had been previously suspected to have adenovirus infections. Also in Germany, the prevalence
of neutralizing antibodies against different reptilian AdVs was found to be 33.8% and 44.9%,
among lizards and snakes, respectively, belonging to various species [39]. However, because of
the different target and sensitivity, the discrepancy between the results of serological tests or
PCR detection is not unprecedented. Moreover, the role of innate antibodies in false positive
serology results should also be considered [45,46].

The interpretation of the low overall positivity rate, observed in our study, is challenging
especially because of the uneven distribution. From animals, sampled at the Chafarinas Islands,
we could not derive any AdV sequences at all, although the majority (two thirds) of the samples
were collected here. Nevertheless, even if our data are preliminary, the failure to detect adenovi-
ral DNA in the significant number (205) of samples examined may suggest a significantly
lower prevalence if not complete absence of AdVs in reptiles of the Chafarinas Islands natural
reserve, which is a considerably good news from a conservationist point of view. The combined
number of positive samples of animals examined at the Guadarrama Mountains, was 22 repre-
senting an almost 20% of positivity. A strikingly high infection rate (50%) was demonstrated
among the Iberian worm lizards. Controversially, all of these individuals appeared to be
healthy, showing no clinical signs or behavioral anomalies. The same applies for the positive
Carpetane rock lizards as well. These findings corroborate that AdV infection without notable
disease or clinical signs may be present in different vertebrate hosts including adult squamate
reptiles [36,37,47].

values are shown if higher than 0.5, whereas bootstrap values only over the value of 50. Squamate adenoviruses are highlighted in bold, novel
adenoviruses detected in this study are underlined.

doi:10.1371/journal.pone.0159016.g002

Table 2. G+C content of the short (PCR-amplified) fragments of the DNA polymerase gene and the
complete genome (if available) of selected atadenoviruses.

Name of the virus G+C content of the pol fragment (~300 bp) G+C content of the complete genome

Scincid-1 52.9% N/A

Snake-1 51.1% 55.3%

Eublepharid-1 50% N/A

Lizard-2 45.8% 44.2%

Lacertid-2 45% N/A

Amphisbaenian-1 41.2% 43.13*

Lacertid-1 37.6% N/A

Duck-1 47.4% 43%

Bovine-4 37.1% 38.5%

Bovine-6 36% 35.1%

Ovine-7 32.4% 37.5%

Possum-1 38.2% 40.4%*

Non-squamate atadenoviruses, supposed to have switched hosts, are separated from the squamate

atadenoviruses by a thick line. Values lower than 45% are highlighted in bold. The names of the newly-

detected putative adenoviruses are underlined. Values, marked with an asterisk (*) are deduced from

incomplete genome sequences.

doi:10.1371/journal.pone.0159016.t002
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As a result of this study, we discovered the presence of three, hitherto unknown AdVs.
However, for their ultimate confirmation, acquisition of the sequences of additional genes or,
preferably, of the entire genome would be indispensable. Our first attempts were fruitful with
the AmAdV-1, which is not only the very first AdV ever detected in an amphisbaenian host,
but only the second virus, after a parvovirus, found in any member of this cryptic, yet ecolog-
ically and evolutionally important group of squamates [48].

The first members of the genus Atadenovirus have been recognized in ruminant mammals
and birds. These viruses have shown irregular properties, and have later been found to possess
genomic DNA with very low G+C content, hence the name of the genus [49]. During the first
adenovirus phylogeny reconstructions, their large distance from members of the other two gen-
era (Mastadenovirus and Aviadenovirus) has been discovered. The hypothesis on the possible
co-speciation and co-evolution of AdVs and their respective vertebrate hosts was based on the
similarity between the topology of phylogenetic trees of AdVs and their hosts. Initially, the line-
age of atadenoviruses had been thought to belong to reptiles in general [6]. However, targeted
examinations revealed that atadenoviruses are prevalent among squamate reptiles only,
whereas non-squamate reptiles seem likely to have their separate AdV lineages [50]. Interest-
ingly however, the G+C content of the partial or full genomic DNA sequences obtained from
snake and lizard AdVs, has been found usually in a non-biased range of 45−55% [8,25,51].

The atadenoviruses found in some mammals and ruminants are now hypothesized to have
switched hosts and the higher A+T content in their DNAmight result from the adaptation pro-
cess to the new host [52]. Indeed, such phenomenon has been reported with other viruses
recently [53]. The overall genomic base-composition bias is mirrored even in the short pol
gene fragments [8,25]. Interestingly, the phylogeny analysis clearly assigned our three newly-
detected putative AdVs to the genus Atadenovirus, the G+C content can be considered bal-
anced in case of LaAdV-2 exclusively (45% as shown in Table 2). Although LaAdV-1 clustered
with LaAdV-2 as a monophyletic branch, the G+C content in its pol sequence is only 37.6%.
This contradiction is difficult to resolve, as the mechanisms, leading to this bias are poorly
understood. The selection pressure, due to the ability of the innate immune system to recognize
non-methylated CG dinucleotides, could provide a plausible explanation [54,55]. From the
other hand, methylation of viral genomes might result in higher mutation rate at such posi-
tions, eventually reducing the amount of CpG dinucleotides [56,57]. Thus the different methyl-
ation patterns of novel host cells could also be responsible for the decrease in the overall G+C
content of these viral genomes. The low G+C proportion in the sequence of the AmAdV-1 and
LaAdV-1 genome fragments suggests that these viruses are likely to have switched hosts. The
lack of disease or any clinical signs seemingly contradicts to this assumption, as generally an
elevated pathogenicity is attributed to AdVs infecting a novel host. However, as the time of the
eventual host switch events cannot be determined, and several individuals were found to carry
the respective AdVs, we might assume a longer period, during which a transition from acute to
persistent infection might have taken place. The position of AmAdV-1 on both phylogenetic
trees, next to DAdV-1, might imply a host switch from a more remote, perhaps avian, host.
This is also supported by the short length of the derived pX, in contrast with reptilian atadeno-
viruses, where it always exceeds 80 aa (84 aa for snake AdV-1 and 88 aa for lizard AdV-2) and
more similar to that of non-reptilian atadenoviruses (67 aa in DAdV-1) [34,51,58]. It is also
likely that LaAdV-1 originates from another, closely related lacertid species, hence infection of
the Iberian green lizards happens sporadically, for example in the event of immunosuppressive
effects. In case of Carpetane rock lizards, elevated testosterone levels during mating season
were found to be in a positive correlation with apicomplexan parasite burden, suggesting tes-
tosterone to be a significant immunosuppressant [59]. Such immunosuppressive mechanisms,
as both Iberian green lizard males displayed mating behavior, might have contributed to
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excessive shedding of AdVs via the gastrointestinal tract, hence facilitating the detection of
viral DNA in the cloacal swabs screened in our work. LaAdV-2 appears more likely to have
coevolved with the Carpetane rock lizard for a longer period of time. This scenario is sup-
ported, besides the balanced G+C content, by the existence of multiple genotypes as well.

5. Conclusions
Examinations aiming at the assessment of the prevalence and diversity of AdVs in free-living
reptiles in natural reserves resulted in the discovery of three novel squamate AdVs in Spain. As
the first AdVs ever detected in amphisbaenians and lacertids, their significance, regarding ade-
noviral diversity, is indisputable. Moreover, the presumed evolutionary background of
AmAdV-1 and LaAdV-1 suggests that atadenoviral evolution might be more complex than
originally thought. We revealed the possibility of multiple host switches between squamate rep-
tiles and other vertebrates, as well as between squamates of different taxonomical status. Even
though the detected AdVs did not appear to be responsible for any clinical signs or diseases in
these endangered and/or highly protected reptile species, their prevalence in Iberian worm liz-
ards and Carpetane rock lizards was found to be rather high. It is well known that subclinical
persistent AdV infection might contribute to higher susceptibility for various infectious agents
including parasites, bacteria or other viruses [36,60]. The uneven AdV prevalence among the
animals belonging to different squamate species claims also attention, as interactions between
these populations, due to habitat loss, as well as to the introduction of invasive species, could
also lead to emerging diseases. Finally, the lack of positive cases among the reptiles, collected
on the Chafarinas Islands, draws the attention to the importance of vigilance regarding the
introduction of native or invasive reptiles. The spectrum of species sampled on the two study
sites did not overlap at all, therefore it would be hard to decide if the AdV negative status of the
Chafarinas Islands is real, and if so, whether it is due to the long-term isolation or some other
conditions. Nevertheless, from a conservation perspective we definitely consider the first aspect
to be plausible.
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